
LLM for Generating Simulation Inputs
to Evaluate Path Planning Algorithms

Chenyang Wang, Jonathan Diller, Qi Han
Department of Computer Science, Colorado School of Mines

Golden, Colorado, USA
{chenyangwang, jdiller, qhan}@mines.edu

Abstract—In computer science and robotics research that
focuses on algorithm designs, simulation is oftentimes the first
step in validating the developed algorithms. However, simulation
inputs need to be designed as close as possible to real-world
scenarios so that a particular algorithm will perform equally
well in simulation as in real-world testing. Designing credible
simulation inputs is time-consuming and requires a fair amount
of human labor, arguably due to the lack of an efficient way
that streamlines the design process while having the capability
to provide enough variations. In this study, we present the first-
ever exploratory effort to use a Large Language Model (LLM) to
facilitate generating simulation inputs. Specifically, we introduce
two distributed Multi-Agent Path Finding (MAPF) algorithms
and then utilize an LLM to generate variations of warehouse
layouts to be used to validate our algorithms. We detail how
to effectively prompt the LLM for simulated warehouse designs
and compare algorithm performance on both human and LLM-
created layouts. Our experimental results show that the LLM-
generated layouts find the same algorithm performance trends
as inputs designed by humans but require much less time to
create, highlighting the LLM’s potential to speed up simulation
environment generation for algorithm testing.

Index Terms—LLMs, Simulation Generation, Multi-Agent
Path Finding, Distributed Robotics, Warehouse Design

I. INTRODUCTION

In the rapidly evolving fields of Computer Science and
Robotics, algorithm development and validation are critical
steps in advancing technological capabilities. One fundamen-
tal step to validate these algorithms is through the use of
simulations. These simulations offer a controlled environment
where algorithms can be tested, refined, and validated before
deploying in real-world scenarios. However, a significant chal-
lenge lies in designing simulation worlds (inputs) that are
both representative of real-world scenarios and capable of
highlighting the strengths and weaknesses of the algorithms.

The fidelity of a simulation directly impacts the confi-
dence in an algorithm’s performance during real-world testing.
Hence, designing simulation inputs that closely mimic real-
world conditions is paramount. This task, however, is often
time-consuming and labor-intensive, requiring detailed knowl-
edge of both the specific research domain and the practical
aspects of simulation input design. Despite these challenges,
efficient simulation input design remains a crucial step, as it
can significantly streamline the algorithm development process
and reduce the time required for validation.

Take the Multi-agent Path Finding (MAPF) algorithms
for logistic robots working in warehouses as an example.

Finding more efficient ways to operate a warehouse has been
in constant demand since the beginning of the Industrial
Revolution but has seen increasing interest given the advent
of online shopping and advances in robotic technologies.
Current research has proposed various MAPF algorithms for
Automated Guided Vehicles (AGVs) working in warehouses,
and the approaches can be categorized into two major types:
centralized solutions [1]–[3] and distributed solutions [4], [5].
In either category, when testing their proposed algorithms, 2D
grids are used as the simulation environment. We also observe
that there is no universal design guideline when considering
such a 2D layout for warehouses that can facilitate the testing
of MAPF algorithms for multiple AGVs. In addition, when
testing various MAPF algorithms in a warehouse setting,
different warehouse layouts are used depending on various
design specifications. Since every warehouse has its own
specifications, creating an effective warehouse layout case by
case by human designers is time-consuming, and the design
cannot be guaranteed to support the full potential of multiple
AGVs. On the other hand, we also notice that efforts are
made to generate realistic 3D simulated warehouses [6]–[10].
While these simulation environments provide more realistic
scenarios for multiple AGVs testing MAPF algorithms, the
warehouse layout design process is more time-consuming and
lacks flexibility when researchers want to test their algorithms
on a large number of warehouse layouts and configurations.
Therefore, we need to find a way to facilitate the simulation
input design process.

In response, we believe that LLMs offer a unique opportu-
nity to tackle this challenge. By leveraging their capabilities to
process and analyze rich multimodal data, understand complex
requirements, and generate solutions accordingly, LLMs can
significantly contribute to the design of warehouses. Hence,
utilizing LLMs in streamlining simulation input design to
thoroughly test the performance of algorithms is a novel
and promising area of exploration. Recognizing this need,
this paper is motivated by an interesting question: Can we
enable LLMs to automate the design of warehouse layouts
that can provide effective and flexible simulations for
distributed MAPF algorithms? Specifically, we first propose
two distributed variations of [1], [2] where we find individual
plans for each robot and then allow them to replan once stuck
without requiring the robots to communicate with one another.
We also compare these two algorithms against a distributed

variation of [3] where traffic patterns avoid the need for
collision avoidance. Then, by applying these MAPF algorithms
to LLM-generated designs and those created by humans, we
demonstrate the viability of this approach and its potential
to revolutionize the simulation design process. Through this
exploratory effort, we uncover new avenues for applying
LLMs beyond their current uses. In particular, with the help of
LLMs, the design process now only involves natural language
without requiring professional programming skills and expert
knowledge, and the parameters in the prompt can be changed
easily according to various warehouse requirements, which
automates the entire process. Following the aforementioned
discussion, we make the following contributions to this study:

• We present and discuss two distributed MAPF algorithms
for AGVs working in warehouses that do not require
intra-robot communication.

• We present our approach to utilize LLMs to design
simulated warehouses that then are used to test the
performance of autonomous robots running distributed
MAPF algorithms.

• We evaluate the performance of various distributed
MAPF algorithms on warehouses designed by both hu-
mans and an LLM.

• We provide insights on the first-ever exploratory effort
using LLMs to design simulation environments tailored
for computer science or robotics algorithmic research.

II. RELATED WORK

LLMs’ Capabilities. With the growth of LLMs’ capabili-
ties, various studies have been conducted to test their limits
for complex applications. For instance, ChatGPT is being
used to generate English reading materials for middle school
students in China [11], and the results show that the generated
reading comprehension exercises can surpass the quality of
human-written ones. ChatGPT is also being used to simulate
believable human behavior as independent agents [12], and
simulation shows that these generative agents can demonstrate
observation, planning, and reflection abilities. Another study
is done to investigate the ability to follow natural language
instructions by using two LLMs: GPT-4 and PaLM2 [13].
LLMs are also being used to understand real-world raw
sensor readings [14]. Results show that LLMs can achieve
above 90% accuracy in understanding raw sensor readings
from human activity sensing and heartbeat detection with
proper guidance. In robotics research, LLMs are being used
to provide suggested procedures for a specific task for robots
to execute [15]. In addition, LLMs have also been proven
useful in designing robots on both the conceptual and technical
levels [16]. In short, LLMs have been proven to be powerful
and effective in a wide range of real-world tasks.

Generation of Simulation Scenarios. Having a relatively
efficient way to generate simulation environments is always an
important aspect of research. With the rapid development of
LLMs, they are specifically being used to generate simulation
scenarios in various domains. To begin with, for robotics
research, GPT-4 has been used to extend the task set from

the previous tasks by generating codes for robotic arms to
execute [17]. Specifically, GPT-4 is used to generate visuo-
motor policies for robotic arms by creating codes, and it
successfully generated over 100 tasks from the original 10
tasks. Moving towards a more abstract level, LLM is being
used to interact with digital twin simulations to determine
feasible parameters to achieve a given objective [18]. LLM
acts as multiple agents within the digital twin simulations to
search for a feasible parameter setting for simulated physical
processes. Combined with the concept of a knowledge graph,
LLM is also being used to generate textual descriptions of
simulated scenarios [19]. Several studies have also focused
on generating simulation components for autonomous driving
applications. For example, LLMs are used to generate synthe-
sized pedestrian movements for realistic autonomous driving
simulators [20]. LLMs can also edit photo-realistic 3D driving
simulations by natural language commends [21]. However, all
these efforts only considered using LLMs to generate some
components for simulation environments without trying to
enable LLMs to streamline the process of creating simulations
themselves, which is the motivation of this study.

III. BACKGROUND PROBLEM: DISTRIBUTED
MULTI-AGENT PATH FINDING

To motivate the need for LLM-generated simulation inputs,
we first introduce the MAPF problem and propose two dis-
tributed algorithms. Evaluating these algorithms via numerical
simulation will require a large data set of warehouse designs.
A. Multi-Agent Path Finding Problem Definition

In the MAPF problem, we are given a warehouse layout
with robot start locations, shelves, and goal locations, and
we are tasked with finding collision-free paths through the
warehouse to complete product retrieval tasks. A task consists
of a starting location, a designated shelf where an object
must be retrieved from, and a drop-off location. Tasks arrive
randomly over the considered time horizon and are unknown
a priori. We assume that the robots have complete state
knowledge of the warehouse (i.e., the layout of the warehouse,
the robot’s location, and the location of all other robots) but
do not know the goal or planned path of other robots and are
not able to communicate with one another.

We assume we are given a set of n warehouse robots that
can complete tasks. Due to the limited number of robots,
we cannot service more than n tasks at once. If a new task
arrives while all n robots are still completing earlier tasks, then
we queue the task and wait for the next available robot. We
consider the operation of the warehouse over a predefined time
horizon T and study two variations of the MAPF problem:

Problem 1: Multi-Agent Path Finding Problem with
Maximum Completed Tasks (MAPF-MCT): Given a ware-
house, n robots, and time horizon T , plan collision-free robot
paths from the start point to the designated task shelf, and from
the task shelf to the drop-off location such that the number of
completed tasks is maximized.

Problem 2: Multi-Agent Path Finding Problem with
Minimum Time (MAPF-MT): Given a warehouse, n robots,

and time horizon T , plan collision-free robot paths from the
start point to the designated task shelf, and the task shelf to
the drop-off location such that the average time to complete
all tasks over T is minimized.
B. Algorithms

We evaluate two distributed algorithms for solving the
MAPF-MCT and MAPF-MT problems. Both approaches are
divided into two phases: an offline initial planning phase and
an online adaptive phase. The algorithms both use the same
first phase to find an initial plan but differ in the second phase.

In the first phase, we find a “collision-agnostic” optimal
path, P , for the robot using A∗ search from the start to the task
location, and from the task location to the drop-off location
while ignoring all other robots. If a robot gets stuck while
following P , the online adaptive phase kicks in. Below are
our two proposed adaptive algorithms for avoiding robot-on-
robot collisions.

1) Dynamic-Replanning: Our first collision avoidance
heuristic is termed Dynamic-Replanning (DR). In this al-
gorithm, we follow P until a collision occurs. With some
probability, we attempt to plan a new route that will go
around the obstacle that the robot collided with (in this case,
a different robot). The algorithm for DR is given in listing 1.

Algorithm 1 Dynamic-Replanning

Require: P : Given robot path
1: waiting ← False
2: while P ̸= ∅ do
3: α← P.pop()
4: if performing α doesn’t cause collision then
5: Perform move α
6: waiting ← False
7: else
8: if waiting then
9: if rand() ≤ ϵ then

10: P ← dynamicReplan()
11: end if
12: else
13: waiting ← True
14: end if
15: end if
16: end while

The DR algorithm takes movement command α from path
P , which tells the robot to move in one of the cardinal
directions. If performing the movement command will not lead
to a collision with another robot, then the robot performs α.
Otherwise, the robot waits a single time step and attempts
α once more. After the second attempt, if performing the
command would still lead to a collision, then the robot replans
P using the dynamicReplan() function, with some probability
ϵ. In the dynamicReplan() function, we first attempt to find
a collision-free path from the robot’s current location to the
target location using A∗ search while considering cells that
do not currently contain a robot. If we are unable to find a
valid path, then we select a random location behind the robot

and use a collision-agnostic A∗ search to find a route that first
visits the random location behind the robot and then proceeds
with the robot’s assigned task.

2) Continuous-Replanning: The second heuristic-based al-
gorithm that we consider is Continuous-Replanning (CR). In
this approach, we re-plan the robot’s route every few time
steps in an attempt to prevent collisions before they happen.
The algorithm for CR is given in listing 2.

Algorithm 2 Continuous-Replanning

Require: P : Given robot path
1: while P ̸= ∅ do
2: if ith iteration then
3: P ← semiAgnstcReplan()
4: end if
5: α← P.pop()
6: if performing α doesn’t cause collision then
7: Perform move α
8: else
9: Wait

10: end if
11: end while

At the start of every ith iteration, the robot discards the
current tour P and dynamically re-plans P using the semi-
AgnstcReplan() function. This function first attempts to find a
collision-free route using A∗, then uses an agnostic A∗ if no
such collision-free route exists. The algorithm then observes
the next move α in path P . If performing α will not cause
a collision, then the robot performs move α, otherwise, the
robot simply waits.

To evaluate the performance and trade-offs of these two
algorithms, we require a large data set of simulation inputs.
However, designing such inputs manually is time-consuming.

IV. WAREHOUSE DESIGN WITH ENGINEERED PROMPT FOR
LLMS

In this section, we discuss the process of using an LLM
to design a warehouse layout that can facilitate the testing of
the aforementioned MAPF algorithms. Specifically, given its
capability to understand textual and image inputs, we choose
ChatGPT-4 [22] as the LLM.

A. The Prompt

ChatGPT needs a detailed description with some back-
ground to understand the task we ask it to complete. There-
fore, providing as many details as possible is important to
facilitate the design process. Inspired by Penetrative AI [14],
we crafted a fixed prompt consisting of an Objective, mul-
tiple Expert Knowledge, multiple Design Specifications, and
multiple Example Layouts. The overview of this LLM-based
design process is shown in Figure 1: the Objective, Expert
Knowledge, and Design Specifications are combined as a fixed
prompt and given to ChatGPT, then ChatGPT’s understanding
of the task is combined with two examples to form another
prompt, which leads to the final design generated by ChatGPT.
We next provide details on each component.

Objective:
Design a smart warehouse for multiple
logistic robots without human operators
present. The goal is to maximize the number
of tasks completed within a time range per
robot and to avoid collisions between robots
as many as possible......

Expert Knowledge:
1. The smart warehouse consists of five
components...
2. The layout of the warehouse is a 2D grid
map...
3. The grids containing shelving cannot be
occupied by a robot...
......

Design Specifications:
1. The warehouse is a 2D grid with a size of
16x16...
2. There will be two starting positions and
two goal positions...
3. The shelves can be placed in any position

within the grid...
......

+

LLM

+Understanding
of the problem

Example 1

LLM

Example 2

LLM Output

LLM’s Design in Our Simulator

Fig. 1: The Overall Design Process using LLM

• Objective: The objective for ChatGPT is to design a 2D
grid layout of the smart warehouse for multiple logistic
robots without human operators present. We define the
design goal as maximizing the number of tasks completed
within a time duration per robot and avoiding collisions
between robots as many as possible. To facilitate Chat-
GPT’s understanding, we also provide an analogy of
designing a city layout using one-way streets.

• Expert Knowledge: The expert knowledge provides defi-
nitions of different terms when designing the layout. For
example, ChatGPT needs to know which components
should be considered during the design, what kind of
movements are allowed for the robots, and the specific
definition of a robot’s task. We also define constraints
during the design, such as the path between shelves may
only have the width of one grid.

• Design Specifications: By informing ChatGPT of the
design specifications, the generated design will follow as
close as possible to the user’s request. In this study, we
asked ChatGPT to generate a 16x16 2D grid layout with
80 shelves. However, these parameters can be any number
according to a specific user’s scenario. In addition, we
enforced ChatGPT to generate a design that satisfies the
following conditions: there must be a path from every
starting position to every shelf and from every shelf to
every goal position. The final design is in a CSV file.

• Examples: After ChatGPT understands the problem by
considering the three aforementioned components, we
supply it with two examples of 2D grid layouts of a
warehouse designed by humans. The first example is from
a previous work [3]. In each example, the shelf placement
and traffic patterns are clearly indicated. The purpose of
providing these examples is to further enhance ChatGPT’s
understanding of the problem visually in addition to the
textual inputs.

B. Insights

We obtained several insights from this process. 1) For
Expert Knowledge and Design Specifications, ChatGPT can
hardly infer the underlying meaning of some constraints and

specifications, which, on the other hand, a human can easily
infer. In addition, ChatGPT makes its own assumptions about
some definitions and constraints, which do not align with the
design specifications. Therefore, after several iterations with
ChatGPT trying to understand its limit, we added several very
detailed instructions in the final prompt to ensure ChatGPT
can follow the prompt. As a result, in the final prompt,
Expert Knowledge has 17 very detailed items, and Design
Specifications has eight very detailed items. 2) Even though
the prompt contains detailed instructions, ChatGPT can still
make minor mistakes in the final design. Therefore, it is
necessary to check the generated design and fix these obvious
errors manually. 3) Providing the visual examples is beneficial.
Given the image-reading and logical reasoning capabilities
of ChatGPT, providing images of warehouse layouts with
traffic patterns designed by humans can improve ChatGPT’s
understanding of the rationale behind a specific design and
apply it to its own design. This can be proven by ChatGPT’s
response to the aforementioned examples:
• Aisles that allow for two-way traffic, with main thorough-

fares for the robots’ primary routes.
• Secondary paths between the shelves where robots can

move in one direction to reach specific areas.
• A looped system ensuring robots can move continuously

without the need for U-turns, which increases efficiency
and reduces the change of bottlenecks or collisions.

Next, we asked two engineering students with no prior
knowledge of the study to complete the same task by following
the prompt provided to the LLM. Specifically, we asked the
students and the LLM for three types of warehouses: 16×16
in size with 80 shelves, 20×20 with 100 shelves, and 30×30
with 300 shelves. Due to space limits, we only show the
visualizations of the first two designs, which are shown in
Figure 2 and 3. All the designs will be evaluated in the
following section.

V. PERFORMANCE EVALUATION

To evaluate the effectiveness of the LLM-designed ware-
houses as simulation inputs for validating our MAPF algo-
rithms, we ran our algorithms with two baselines on both

the human and LLM designs to determine if we see the
same algorithm performance trends across the various designs.
Specifically, all the designs are stored in CSV files, which are
used as inputs to our simulation environment. This section
summarizes our results.

A. Experiment Setup

We simulated 500-time steps and set a 25% chance that a
new task would be generated at each time step. Each task
consisted of a starting point, a target location, and a goal
location. We ran the simulation 50 times for each warehouse
design, starting each run with a unique random seed that was
applied to each approach to ensure that all algorithms received
the same tasking load. We consider the average number of
tasks completed each run (the MAPF-MCT problem), the
average number of time steps required per task (the MAPF-
MT problem), and the longest that a robot had to wait as our
experiment metrics.

In addition to our two proposed algorithms from Sec-
tion III-B, we also experimented with two baseline methods.
Our first baseline uses traffic patterns assigned to the ware-
house and uses the A∗ search algorithm to find a single path
for each robot before deployment. We term this approach the
Traffic Patterns (TP) approach [3]. Our second baseline re-
moves robot-on-robot collisions in the simulation and follows
the optimal path found using A∗. Although this approach does
not provide valid plans for the MAPF problem, it does provide
a theoretical bound on performance, finding a lower bound on
the average number of steps required per task (LB) and an
upper bound on the number of tasks that can be completed in
the considered time frame (UB).

B. Simulation Results

Figures 4, 5, and 6 show the simulation results on the
16×16, 20×20, and 30×30 warehouse layouts, respectively.
For clarity, a higher average task completion is better, while
a lower time-steps per task and longest wait time are better.

What we are looking for in the graphs are repeating trends
in algorithm performance between the human-designed inputs
and the LLM inputs. Although the algorithms performed
differently between the human and LLM design, the CR and
DR algorithms perform comparably in Tasks Completed on all
input sizes, with CR slightly better on human inputs than what
is seen on the LLM. However, the two algorithms perform
closely enough that we cannot claim one is better than the
other in Tasks Completed. Both algorithms greatly outperform
the TP baseline on both human and LLM inputs.

For the Time Steps Required metric, we see that the human
inputs show the CR algorithm clearly outperforming DR but
do not see this same trend on all LLM inputs. Notably, the
LLM designed a 16×16 warehouse where the DR algorithm
reduced the number of time step per task by 13.0% compared
to the CR algorithm, breaking from the trend. However, both
the human and LLM inputs show that the TP baseline performs
comparable or better than our two proposed algorithms in
Time Steps Required, leading to the same conclusion that the

proposed algorithms trade-off total tasks complete with time
steps required per task.

Both the human and LLM inputs show that the two proposed
algorithms avoid deadlocks, while the TP algorithm can lead
to deadlocks. This is seen in the Stuck Time metric, where the
two proposed algorithms average near zero time steps without
moving, while the TP algorithm clearly allows the robots to
get stuck for both human and LLM designs.

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

S

X

X

X

X

X

X

X

X

S

X

X

X

X

G

G

(a) Human’s design

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

S

G

S

G

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

(b) LLM’s design

Fig. 2: A 16×16 warehouse with 80 shelves. Grey cells are
the shelves; white cells are the empty floor space with an
omnidirectional traffic pattern; green cells are the starting
positions; and yellow cells are the goal positions.

G

S

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

S

G

(a) Human’s design

S

G

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

S

G

(b) LLM’s design

Fig. 3: A 20×20 warehouse with 100 shelves.

C. Experiment Takeaways

Our simulation results give us two major takeaways from
this study. Firstly, we see that, for the most part, the human-
designed inputs and the LLM-designed inputs lead to the same
performance trends across the considered algorithms. This
was particularly true for the Tasks Completed metric and the
Stuck Time metric. For the Time Steps Required metric, we
get conflicting performance trends between the CR and DR
algorithms but see that both average more time steps per task
when compared to the TP baseline.

Secondly, our results show that both the human designers
and the LLM struggled to design traffic patterns in the
warehouse. Previous work has shown that traffic patterns in
warehouses and the TP algorithm can perform well if the
warehouse is designed correctly [3]. However, both the LLM
and the human designer created warehouses that allowed for
deadlock scenarios in the traffic patterns. This indicates that
our prompts were unclear on how to add traffic patterns to the

warehouse, and asking a human designer to follow our prompts
shows us that the prompt itself needs to be addressed.

In terms of time consumed for the design process, the stu-
dents reported that it took them roughly 50 minutes to design
one variation. On the other hand, for each variation, LLM only
took within a minute to produce. This strongly indicates the
potential of our approach to speed up the validation process.

In summary, these results show that an LLM can be used to
generate simulation inputs to evaluate algorithm performance,
but we also recommend validating results found on LLM
inputs with a small selection of human-designed inputs.

	0

	20

	40

	60

	80

	100

	120

	140

CR DR TP UB

A
ve

ra
ge

	N
um

be
r	o

f	T
as

ks
	C

om
pl

et
ed

	Human	Design
LLM	Design

(a) Tasks Completed

	20

	25

	30

	35

	40

	45

	50

	55

	60

CR DR TP LB

A
ve

ra
ge

	T
im

e	
St

ep
s	P

er
	T

as
k

Human	Design
LLM	Design

(b) Time Steps Required

	0
	50

	100
	150
	200
	250
	300
	350
	400
	450
	500

CR DR TP

A
ve

ra
ge

	L
on

ge
st	

W
ai

t	T
im

e

	Human	Design
LLM	Design

(c) Stuck Time

Fig. 4: Simulation results on 16×16 warehouse designs.

	0

	20

	40

	60

	80

	100

	120

	140

CR DR TP UB

A
ve

ra
ge

	N
um

be
r	o

f	T
as

ks
	C

om
pl

et
ed

	Human	Design
LLM	Design

(a) Tasks Completed

	20

	25

	30

	35

	40

	45

	50

	55

CR DR TP LB

A
ve

ra
ge

	T
im

e	
St

ep
s	P

er
	T

as
k

	Human	Design
LLM	Design

(b) Time Steps Required

	0
	50

	100
	150
	200
	250
	300
	350
	400
	450
	500

CR DR TP

A
ve

ra
ge

	L
on

ge
st	

W
ai

t	T
im

e

	Human	Design
LLM	Design

(c) Stuck Time

Fig. 5: Simulation results on 20×20 warehouse designs.

	0

	20

	40

	60

	80

	100

CR DR TP UB

A
ve

ra
ge

	N
um

be
r	o

f	T
as

ks
	C

om
pl

et
ed

	Human	Design
LLM	Design

(a) Tasks Completed

	20

	30

	40

	50

	60

	70

	80

	90

CR DR TP LB

A
ve

ra
ge

	T
im

e	
St

ep
s	P

er
	T

as
k

	Human	Design
LLM	Design

(b) Time Steps Required

	0
	50

	100
	150
	200
	250
	300
	350
	400
	450
	500

CR DR TP

A
ve

ra
ge

	L
on

ge
st	

W
ai

t	T
im

e

	Human	Design
LLM	Design

(c) Stuck Time

Fig. 6: Simulation results on 30×30 warehouse designs.

VI. CONCLUSION

This study explores the feasibility of utilizing currently
available LLMs to facilitate the simulated warehouse lay-
out design for MAPF algorithms testing. By changing the
parameters in the prompt, we show that LLMs can design
warehouse layouts on various scales for algorithm valida-
tion. By comparing the performance of MAPF algorithms
for distributed robots on human-designed and LLM-designed
layouts, we show that LLMs’ designs can produce similar
performance trends compared to human designs but with much
less time consumed. However, we also found out that LLMs
are not as creative as humans when designing the layout; in
addition, LLMs occasionally create deadlocks. To enhance
the creativity and the robustness of the generated layouts,
future research could focus on specific prompt engineering to
avoid deadlocks and provide more visual examples to increase
LLM’s creativity. Overall, considering both the benefits and
the limitations, using LLM to generate simulation inputs for
algorithm validation is promising.

REFERENCES

[1] S. D. Han and J. Yu, “Effective heuristics for multi-robot path planning
in warehouse environments,” in IEEE International Symposium on Multi-
Robot and Multi-Agent Systems (MRS), 2019.

[2] ——, “Ddm: Fast near-optimal multi-robot path planning using
diversified-path and optimal sub-problem solution database heuristics,”
IEEE Robotics and Automation Letters (RA-L), vol. 5, 2020.

[3] A. Bolu and Ö. Korçak, “Path planning for multiple mobile robots
in smart warehouse,” in IEEE International Conference on Control,
Mechatronics and Automation (ICCMA), 2019.

[4] S. Dergachev and K. Yakovlev, “Distributed multi-agent navigation
based on reciprocal collision avoidance and locally confined multi-agent
path finding,” in IEEE International Conference on Automation Science
and Engineering (CASE), 2021.

[5] B. De Wilde, A. W. Ter Mors, and C. Witteveen, “Push and rotate: co-
operative multi-agent path planning,” in ACM International Conference
on Autonomous Agents and Multi-agent Systems (AAMAS), 2013, pp.
87–94.

[6] M. Bučková, M. Krajčovič, and D. Plinta, “Use of dynamic simulation
in warehouse designing,” in International Conference on Intelligent
Systems in Production Engineering and Maintenance, 2018.

[7] A simulation of basic robot localization (slam) and navigation
in warehouse environment. [Online]. Available: https://github.com/
wh200720041/warehouse simulation toolkit

[8] Aws robomaker small warehouse world. [Online]. Available: https:
//github.com/aws-robotics/aws-robomaker-small-warehouse-world

[9] Dynamic logistics warehouse. [Online]. Available: https://github.com/
belal-ibrahim/dynamic logistics warehouse

[10] L1br: a warehouse robot simulation. [Online]. Available: https:
//github.com/LASER-Robotics/Warehouse Gazebo

[11] C. Xiao, S. X. Xu, K. Zhang, Y. Wang, and L. Xia, “Evaluating reading
comprehension exercises generated by llms: A showcase of chatgpt in
education applications,” in 18th Workshop on Innovative Use of NLP for
Building Educational Applications (BEA), 2023.

[12] J. S. Park, J. O’Brien, C. J. Cai, M. R. Morris, P. Liang, and M. S.
Bernstein, “Generative agents: Interactive simulacra of human behavior,”
in 36th Annual ACM Symposium on User Interface Software and
Technology, 2023.

[13] J. Zhou, T. Lu, S. Mishra, S. Brahma, S. Basu, Y. Luan, D. Zhou, and
L. Hou, “Instruction-following evaluation for large language models,”
arXiv preprint arXiv:2311.07911, 2023.

[14] H. Xu, L. Han, Q. Yang, M. Li, and M. Srivastava, “Penetrative ai:
Making llms comprehend the physical world,” in 25th International
Workshop on Mobile Computing Systems and Applications (HotMobile),
2024.

[15] A. Brohan, Y. Chebotar, C. Finn, K. Hausman, A. Herzog, D. Ho,
J. Ibarz, A. Irpan, E. Jang, R. Julian et al., “Do as i can, not as i say:
Grounding language in robotic affordances,” in Conference on robot
learning (CoRL), 2023.

[16] F. Stella, C. Della Santina, and J. Hughes, “How can llms transform the
robotic design process?” Nature machine intelligence, vol. 5, 2023.

[17] L. Wang, Y. Ling, Z. Yuan, M. Shridhar, C. Bao, Y. Qin, B. Wang,
H. Xu, and X. Wang, “Gensim: Generating robotic simulation tasks via
large language models,” in The International Conference on Learning
Representations (ICLR), 2024.

[18] Y. Xia, D. Dittler, N. Jazdi, H. Chen, and M. Weyrich, “Llm ex-
periments with simulation: Large language model multi-agent system
for process simulation parametrization in digital twins,” arXiv preprint
arXiv:2405.18092, 2024.

[19] J. Zhang, Y. Zhang, M. Chu, S. Yang, and T. Zu, “A llm-based simulation
scenario aided generation method,” in IEEE Information Technology and
Mechatronics Engineering Conference (ITOEC), 2023.

[20] M. Ramesh and F. B. Flohr, “Walk-the-talk: Llm driven pedestrian
motion generation,” in IEEE Intelligent Vehicles Symposium, 2024.

[21] Y. Wei, Z. Wang, Y. Lu, C. Xu, C. Liu, H. Zhao, S. Chen, and Y. Wang,
“Editable scene simulation for autonomous driving via collaborative
llm-agents,” in IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2024.

[22] OpenAI, “Gpt-4 technical report,” arXiv preprint arXiv:2303.08774,
2023.

