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Abstract—Teams of drones have been proposed for many
monitoring and data collection applications, including forest fire
monitoring, search and rescue, disaster response, and infrastruc-
ture inspection. However, robot systems can be stochastic, and
uncertainty arises when operating environments are dynamic or
hostile. This paper investigates the problem of assigning drones
to tasks where the probability that a given group of drones
can cooperatively complete a task follows a Poisson-Binomial
distribution. We show how to determine if a solution exists
and how to calculate an upper bound on the optimal solution.
We present a variation of the branch-and-bound algorithm –
termed Branch-and-Match – that is tailored to our problem
and always finds an optimal solution at the cost of computation
time. For a more tractable approach, we present a heuristics-
based algorithm – termed M+ILS – that turns the problem into
a balanced matching problem to find an initial solution then
runs a variation of the Iterated Local Search (ILS) algorithm.
Our M+ILS algorithm is applicable to distributed scenarios but
finds suboptimal solutions. We evaluate these various algorithms
in a simulated forest fire monitoring scenario based on the
characteristics of a fleet of real drones. Our empirical results
show that the M+ILS algorithm finds solutions with an average
performance gap of 2.68% compared to the optimal solution
found using the Branch-and-Match algorithm.

Index Terms—Distributed Task Assignment, Drone Swarms,
Failure-Aware Assignments, Poisson-Binomial Distributions

I. INTRODUCTION

In July of 2022, the Washburn Fire of Mariposa Grove, CA
broke out in Yosemite National Park and threatened a grove of
500 giant sequoias and 1,600 people when it burned 19.7 km2

of the park and national forest [1]. In this paper, we study how
teams of drones could have been deployed to aid firefighters
in containing and monitoring the movements of the fire.

Using data captured by NASA’s Fire Information for Re-
source Management System1 (shown in Fig. 1), we have cre-
ated a forest fire monitoring case study based on the Washburn
Fire. From this data, we have designed four drone monitoring
tasks to support the initial response to the fire (depicted as
green flags in the figure). For an effective response, we need
all tasks completed. Given a fleet of heterogeneous drones, the
problem becomes determining which drones should perform
which tasks.

Initially, assigning drones to the monitoring task may appear
to be a standard assignment problem, a well-studied area [2].
However, drones exhibit non-deterministic behavior, partic-
ularly in terms of energy consumption rates, making their
performance and operational endurance challenging to predict

This work was funded in part by W911NF-22-2-0235.
1firms.modaps.eosdis.nasa.gov/map/#d:2022-07-08;@-119.60,37.50,14.00z
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Fig. 1. Case study on 2022 Washburn Fire in Mariposa Grove, California.
Green flags are monitoring tasks, orange diamonds are drone launch locations,
and the blue square is the base station. Light red markers show low resolution
hot spots while dark red markers indicate active fires within 30 meters.

accurately. Environmental factors, such as wind, hardware
factors, and the age of a battery will impact performance
and make a drone’s operational abilities stochastic. We ar-
gue that the stochastic nature of energy consumption and
the probability that a drone may run out of energy before
successfully executing a task (that is, system failure) should be
considered when assigning tasks to drones for data collection
and monitoring applications.

When faced with uncertainty, it is advantageous to assign
additional drones to a task to increase the probability that
the task is completed. Suppose that Task 4 is an early fire
detection task that only requires two drones to cover the area.
However, if we assign more than two drones to Task 4 then
the probability that at least two of the drones successfully
monitor the area will increase. If we treat the probability that
any individual drone successfully participates in the task as
an independent trial and have a minimum number of required
participating drones for the task to be completed, then the
probability that the task is completed will follow a Poisson-
Binomial distribution [3].

Furthermore, the tasks themselves are expected to be dy-
namic. Suppose that after deploying teams of drones for each
task in our case study, the epicenter of the fire moves, changing
the location and demands of each task. The dynamic nature
of a forest fire creates the need for distributed algorithms that
can quickly replan drone tasking during deployment.

In this work, we investigate a new class of task assignment
problems where the objective function is a product of Poisson-
Binomial trials. We term this class of problems the Maximum



Probability of Task Success (MPTS) problem, which includes
compatibility and minimum-worker constraints. To the best
of our knowledge, we are the first to consider this class
of problem. We make the following contributions in this
article:

1) We show how to determine if a solution exists to
the MPTS problem in polynomial time and provide a
theoretical upper bound on a solution.

2) We propose the Branch-and-Match algorithm, a com-
plete solution based on the classic branch-and-bound
algorithm that reduces branching by utilizing our work
on solution existence.

3) We propose the M+ILS algorithm, a heuristics-based
approach to solving the MPTS problem that can be
implemented as a distributed algorithm and can quickly
run online during mission execution.

4) We show how to assign a probability to the operational
capabilities of drones and use this to motivate the MPTS
problem setup.

Our extensive numerical simulations and deployment on a
physical, distributed testbed demonstrate the utility of our two
proposed algorithms and highlight their tradeoffs.

Although we focus on drone tasking for forest fire mon-
itoring in this work, we argue that our problem setup and
proposed algorithms can function in many other applications
and problem domains. Possible other areas of application
include infrastructure inspection, agriculture, manufacturing,
or disaster response. To help further the frontiers of research
and to promote good research integrity, our algorithm imple-
mentation and data sets have been made open-source2.

II. RELATED WORKS

In this section we review related bodies of work, starting
with various assignment problems and then look at distributed
algorithms commonly used for solving assignment problems.

A. Task Assignment Problems for Robotics

In the linear assignment problem, we are given n workers
(agents), m jobs (tasks), worker-to-job costs and are asked to
find a one-to-one matching such that we minimize the summa-
tion of worker-to-job costs, where m ≥ n. This problem can
be solved using the well studied Hungarian method (Kuhn-
Munkres algorithm), which runs in polynomial time [4]. A
related problem is the general task assignment (GTA) problem,
where we are given m items with profits and n bins with
capacities and are asked to find an assignment of items to bins
such that we maximize the expected profit without exceeding
bin weight limits. This problem is known to be NP-hard [2]
and is often applied to robot-task assignment scenarios [5].

Many works have expanded the GTA problem to incorpo-
rate probabilities. Notably, in the Weapon-Target Assignment
(WTA) problem we are given a set of targets with rewards, a
set of weapons with a probability of destroying a target, and
are asked to find weapon-to-target assignments that maximize

2https://github.com/pervasive-computing-systems-group/MPTS

the expected reward. The WTA problem is also known to be
NP-complete [6]. A variety of solutions have been proposed
for the WTA problem, such as branch-and-bound algorithms
that exploit some aspect of the problem and find optimal
solutions [7]. Among heuristics-based approaches, Very Large
Scale Neighborhood Search (VLSN) algorithms are quite
popular [8], [9], as are biology-based solutions (e.g. bee
colony algorithms [10]). Similar in nature to exact methods
for the WTA problem, we design a custom branch-and-bound
algorithm that exploits the problem structure of the MPTS
problem to find optimal solutions.

Although the WTA problem and the MPTS problem are
similar in nature, there are some key differences between the
two. The MPTS problem seeks to maximize the probability
that all tasks are completed while the WTA problem seeks
to maximize a reward for completing tasks. Furthermore, the
WTA problem maximizes the probability that one or more
agents complete a task while our MPTS problem maximizes
the probability that dj ≥ 1 or more agents are successful,
where dj is the minimum number of agents required to com-
plete task j. The former is a product of Bernoulli trials while
the latter requires one to optimize the cumulative distribution
function (CDF) of a Poisson-Binomial Distribution (PBD),
which changes the dynamics of how moving an agent from
one task to another impacts the objective.

There are few examples of assignment problems that involve
phenomenon that exhibit a PBD. Examples include sensing
wireless channel activity [11] or randomly occurring jobs [12].
These works optimize some cost function and only use the
PBD as a constraint to limit errors or future infeasibility. In
this work, our objective is to maximize the CDF of a PBD
rather than incorporating the CDF into problem constraints.

B. Distributed Task Assignment Algorithms

Given the dynamic nature of the considered scenario, we
seek a distributed assignment algorithm for the MPTS problem
that is tractable enough for online decision making. Further-
more, we prefer a solution that does not require the robots to
share all of their capabilities or energy status due to privacy
concerns.

A common approach to solving assignment problems is to
run distributed versions of centralized algorithms involving
matchings over bipartite graphs. This is seen in [13], where
they search for augmenting paths over a bipartite graph in
a distributed solution to the Bottleneck Assignment problem
(which seeks to maximize the minimum cost assignment).
Similarly, the authors in [14] propose a distributed version
of the Hungarian method for solving the linear assignment
problem to optimality that builds a weighted covering in a
bipartite graph of agents to tasks by finding minimum cost
matchings then searches for augmenting paths over the graph.
Another common distributed approach for the linear assign-
ment problem is for the agents to share costs and then solve the
bipartite matching locally, as seen in [15], [16], while others
have investigated how to reduce message passing by limiting
what information is shared [17]. Similar to the idea presented



in [15], our M+ILS algorithm forms a balanced matching
problem out of the MPTS problem and uses a distributed
version of the Hungarian method to find an initial solution.
To reduce information sharing, we recommend Giordani’s
distributed implementation of the Hungarian method [14],
but this can be changed for more efficient algorithms when
information privacy is not a concern.

Among distributed algorithms for finding near-optimal so-
lutions, a common approach is to allow agents to run local
searches over iterations. One example of this is gradient decent
algorithms, which are popular for training machine learning
models [18] and for multi-agent, multi-objective convex opti-
mization problems [19]. In [20], the authors use a distributed
local search to find graph partitions in large social networks.
The authors in [21] propose an iterative Monte-Carlo tree
search for searching local robot-action spaces for actions that
improve cumulative team reward.

An interesting aspect of the MPTS problem is that not all
drones are required for a valid solution, giving the drones
more freedom to search their local solution space without
creating an invalid solution. Inspired by this fact, our M+ILS
algorithm utilizes the ILS algorithm [22] to improve on the
initial solution. In the original ILS algorithm, we perform a
local search then randomly “perturb” the search space to move
out of local minimum. There is limited work on distributed
versions of the ILS algorithm (see [23], [24] where they still
require a leader-follower structure). In this work, we propose
a distributed variation of the ILS algorithm where each drone
searches its local solution space then perturbs its neighbor
without sharing all of its capability information. When com-
bined with the initial solution, our M+ILS algorithm greatly
improves solution quality over the classic ILS algorithm.

III. MAXIMUM PROBABILITY OF TASK SUCCESS
PROBLEM FORMULATION

In this section we demonstrate how to calculate the proba-
bility that a drone has enough energy to complete an assigned
task then formally define our problem, termed the Maximum
Probability of Task Success (MPTS) problem.

A. Drone Energy-based Probability of Contribution

Drone energy depletion has been shown to depend on the
physical characteristics of the drone platform and on the speed
that the drone travels at [25]. Building on the model presented
in [26], [27], let the total energy budget of drone i be msi,
the total time duration that the drone can travel at max speed
mvi starting with a fully charged battery and operating in an
ideal environment, which is measured in seconds and termed
seconds-moving. Mathematically,

msi =
VbatBrate
P(mvi)

(1)

where Vbat is the voltage rating of the equipped battery,
Brate is the depletion rate of the battery, and P(mvi) is the
power used by drone i when moving at mvi, which is further
discussed in detail in [25]. We will assume that all drones

travel at max speed in this work as this has been shown to
generally outperform moving at slower speeds [28], [29]. From
(1), we see that the total time duration that a drone can hover
(i.e. when vi = 0) with a fully charged battery will be

hsi =
VbatBrate
P(hvi)

(2)

where P(hvi) is power consumption when hovering.
Based on this model for drone energy, if task j requires

drone i to travel a total of distij meters and hover for
tj seconds, then the predicted energy budget required (in
seconds-moving) to complete the task will be:

sij =
distij
mvi

+ tj
msi
hsi

(3)

However, wear and age will impact the capacity and depletion
rate of a battery. The authors in [30] found experimentally
that the capacity of a lithium ion battery will decrease linearly
as a function of the number of charging cycles. Building on
this work, let the percent reduction in battery capacity after c
recharging cycles be:

r(c) = 1− ϕc (4)

where ϕ is a constant determined experimentally. In addition
to battery wear, several external factors such as wind, pre-
cipitation, elevation, and others will also impact how quickly
the drone consumes energy during deployment. All of these
factors are challenging to accurately predict. Instead, we
propose adding an error term to our energy budget that follows
a continuous probability distribution. If we choose to model
the error as a normal distribution, our energy budget becomes:

si = r(c)
VbatBrate
P(mvi)

∼ N (µi, σi) (5)

where mean µi = msi and standard deviation σi = γ msi
for some interval of confidence γ ∈ [1, 0]. We chose a
normal distribution due to its universality but acknowledge that
other continuous probability distributions could be substituted
into our formulation without major change. Determining the
exact characteristics of the distribution requires further field
experimentation and is left for future work.

The probability that drone i completes task j without
running out of energy will be

pij =

∫ ∞
sij

1

σi
√
2π
e
−(t−µi)

2

2σ2 dt. (6)

In other words, pij is the probability that the actual energy
budget of drone i is greater than or equal to sij .

B. Maximum Probability of Task Success Problem

We now build on (6) to formally define the MPTS problem.
We refer the reader to Table I for a list of symbols used in
our formulation.

We are given a set I of n drones and a set J of m tasks,
where n ≥ m, and are asked to assign drones to tasks such
that the probability of all tasks being completed is maximized.



Each drone has a set of capabilities (e.g. sensors) and each
task has capability requirements (e.g. sensors required). Let
ci be a binary array of capabilities for drone i and C be the
capability matrix for all drones. Let rj be a binary array of
capability requirements for task j with R being the matrix
of all task requirements. Each cik ∈ ci is 1 if drone i has
capability k and 0 otherwise. Similarly, each rjk ∈ rj is 1
if task j requires capability k and 0 otherwise. From (6) we
get pij , the probability that drone i successfully contributes to
task j, for i ∈ I and j ∈ J . Although we focus on drones,
our problem scenario can be reapplied to any scenario where
one can assign a value to pij .

Each task requires a minimum of dj drones although we
allow additional drones (so called “floating agents”) to be
assigned to a task. For task j to successfully complete, at least
dj drones assigned to task j must successfully contribute to
the task. For example, suppose we determined that we need
two drones to canvas the area with thermal cameras for eight
minutes to determine the risk to the giant sequoias for Task
4 (j = 4) from our case study. However, we can increase the
probability that at least two drones return with thermal images
by assigning more than two drones to survey j. Determining
how to coordinate data collection between the drones in the
event of failures such that required data is returned will depend
on the specifics of the monitoring task, which we leave for
future work.

Let Ij be the set of drones assigned to task j, where
Ij ⊆ I . The probability that task j gets completed (denoted as
Ps(dj , Ij)) is the probability that dj or more drones from Ij
successfully contribute to the task. We treat each drone i ∈ Ij
as a sequential independent binomial trial where each trial has
probability pij of success. This means that Ps(dj , Ij) is the
probability that dj or more trials are successful. Because each
trial is independent (i.e.

∑
i∈Ij pij may not be 1 and we are not

guaranteed that pij = pi′j or pij = pij′ ), the probability that
dj or more drones successfully contribute to a task follows
a PBD [3]. Given set Ij , the probability that exactly k of
the trials are successful is found using the probability mass

TABLE I
SYMBOLS

Symbol Type Description

C Param. Matrix cik = 1 if drone i has capability k,
0 otherwise

ci Param. Array Capability row for agent i in
parameter matrix C

dj Parameter Number of drones required for task j
I Set Set of all available drones
Ij Set Set of drones assigned to task j
J Set Set of all tasks
K Set Set of all considered capabilities

pij(t) Function Probability that drone i
contributes to task j

R Param. Matrix rjk = 1 if task j requires
capability k, 0 otherwise

rj Param. Array Requirement row for task j in
parameter matrix R

function (PMF) of a PBD:

Pr(k, Ij) =
∑
A∈Fk

∏
i∈A

pij
∏
i′∈A′

(1− pi′j) (7)

where Fk is the set of all combinations of size k of the
drones in Ij and A′ = Ij \ A is the compliment of A.
For example, suppose Ij = {1, 2, 6} and k = 2, then
Fk = {{1, 2}, {1, 6}, {2, 6}} and when A = {1, 2} we get
A′ = {6}.

To determine Ps(dj , Ij), the probability that dj or more
drones contribute to the task, we must compute the comple-
ment of the cumulative distribution function (CDF), termed the
“survival function”. In the general, case where |Ij | = nj ≥ dj ,

Ps(dj , Ij) =

nj∑
k=dj

Pr(k, Ij) (8)

We can now formally define the MPTS problem:
Definition 3.1 (Maximum Probability of Task Success Prob-

lem): Given set of drones I and set of tasks J with minimum
numbers of drones dj for each j ∈ J , find drone-to-task
assignment sets Ij ⊆ I that:

maximize
∏
j∈J

Ps(dj , Ij) (9)

subject to

Ij ∩ Ij′ = ∅, ∀j, j′ ∈ J (10a)
|Ij | ≥ dj , ∀j ∈ J (10b)

(cik − rjk) ≥ 0, ∀k ∈ K, j ∈ J, i ∈ Ij (10c)

Constraint (10a) ensures drones are assigned at most once.
Constraint (10b) requires each task to be assigned at least the
minimum number of drones, dj , for the task to be completed.
Constraint (10c) forces task requirements to be met.

Observe that in (7) there will be nj !
(nj−k)! k! elements in Fk,

making (9) difficult to compute as nj � dj . In [31], they
show how to rewrite the PMF as a Vandermonde matrix and
simplify it into a DFT matrix, the Fourier transform of which
leads to a closed-form expression of the PMF for the PBD.
From their work, we find that the PMF can be computed as

Pf (k, Ij) =

1

nj+1

nj∑
l=0

e−2πlk
√

-1
nj+1

∏
i∈Ij

{
pije

2πlk
√

-1
nj+1 + (1 − pij)

} (11)

For brevity, we do not show the steps to derive (11) but refer
the reader to [31] for these details. The survival function then
simplifies to

Ps(dj , Ij) =

nj∑
k=dj

Pf (k, Ij) (12)

Note that the number of terms in (12) grows as a polynomial
with the size of Ij and we can compute Ps(dj , Ij) in O

(
n2j
)
.

We can formulate an integer non-linear program to solve
the MPTS problem as follows: Let xij be a binary variable,



where xij = 1 if drone i is assigned to task j and 0 otherwise.
Let ajl be a binary variable, for j ∈ J and l ∈ {0, 1, · · ·n},
where ajl = 1 if there are at least l drones assigned to task j
and 0 otherwise. We re-write (11) as

PIP (k, j) =

1

nj+1

n∑
l=0

{
(ajl)e

−2πlk
√

-1
nj+1

∏
i∈I

{
pije

2πlk
√

-1
nj+1 + (1 − pij)

}xij}
(13)

The survival function for our Integer Program is

PsIP (j) =

n∑
k=dj

PIP (k, j) (14)

The Integer Non-Linear program to determine the optimal
drone-to-task assignment to maximize the probability that all
tasks are completed is:

maximize
∏
j∈J

PsIP (j) (15)

subject to ∑
j∈J

xij ≤ 1, ∀i ∈ I (16a)∑
i∈I

xij ≥ dj , ∀j ∈ J (16b)

(cik − rjk)xij ≥ 0, ∀k ∈ K, j ∈ J, i ∈ I (16c)∑
i∈I

xij ≥ lajl, ∀j ∈ J, l ∈ {0, 1, · · ·n} (16d)

We focus on drone energy to determine pij , but the MPTS
problem can be reapplied to new domains where pij can be
defined for tasking independent events. For example, pij could
be the probability that a machine fails while producing widgets
in a manufacturing scenario.

IV. SOLUTION EXISTENCE AND UPPER BOUND

As previously stated, the objective function for the MPTS
problem as presented in (9) will take exponential time to
compute, making the problem formulation sit in EXPTIME.
The integer program presented in (15) is non-convex, a class
of problems known to be NP-Hard. At the time of writing,
there is no known method for formulating the MPTS problem
in a form that can be solved in polynomial time.

Although the MPTS problem is hard to solve to optimality,
we can determine if a solution exists in polynomial time by
mapping the problem to a minimum cost balanced matching
problem – a variation of the linear assignment problem where
there is an equal number (n) of workers and jobs, with cost
kij for each worker i to job j assignment.

Figure 2 helps demonstrate how to map the MPTS problem
into a balanced matching problem that can determine if a valid
solution exists. We start by creating dj jobs for each j ∈ J .
These jobs are depicted in the figure as j.k where 1 ≤ j ≤ m
and 1 ≤ k ≤ dj . These jobs represent the minimum number of
drones that must be assigned to tasks in the MPTS formulation.

Let nr be the total number of drones required to meet dj
for every task and nf the number of floating agents. That is,
nr =

∑
j∈J dj and nf = n−nr. For each task j in MPTS, we

create nf jobs in the balanced matching problem in addition
to the dj jobs for j. These are shown in the figure as j.x for
1 ≤ j ≤ m. Let nt be the total number of jobs required to
form a balanced matching. That is, nt =

∑
j∈J dj + nf |J |.

To make the problem balanced, we add nt−n new “phantom
workers”, which are indicated as “x” in the workers column.

For each worker i and job j, we set kij = 0 if (cik −
rjk) ≥ 0 and to 1 otherwise. The cost of assigning a phantom
worker to any of the required dj jobs is 1 (i.e. a phantom
worker will fail to complete a required task), and the cost
of assigning a phantom worker to a floating job is 0 (i.e. a
phantom worker is guaranteed to complete a floating task). We
call our formulated matching problem B(I, J,C,R). We can
find a least cost assignment to our balanced matching using
the Hungarian method [4], which runs in polynomial time.

Theorem 1: There exists a solution to the MPTS problem
formulated from I, J,C and R if and only if there exists a
minimum cost matching of zero in B(I, J,C,R).

Proof 1: Assume that there is a minimum cost matching
of zero for B(I, J,C,R) and no solution exists to the MPTS
problem. Because there is a minimum cost matching of zero
for B(I, J,C,R), and job assignment costs in B(I, J,C,R)
are, by construction, zero for drones in the MPTS problem
that can actually perform each task, then matching of workers
to jobs in B(I, J,C,R) must be a valid matching of drones to
tasks in the MPTS problem. Therefore, our assumption that no
solution exists to the MPTS problem must have been wrong.

The same proof can be applied in reverse to show that if a
solution exists for the MPTS problem then the minimum cost
matching in B(I, J,C,R) must be zero. �

If the minimum cost matching in B(I, J,C,R) is greater
than zero, this tells us that there are not enough drones to meet
the capability requirements of every task. That is, at least one
task will have less than dj drones that meet requirements rj
and objective function (15) will evaluate to zero.

Additionally, we can provide an upper bound on a solution
by dropping constraint (16a), allowing robots to be assigned
to an unlimited number of tasks. In this case, we set xij = 1
for all drone i and task j that do not break constraint (16c)
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Fig. 2. Balanced matching problem example to prove solution existence.



and then compute: ∏
j∈J

PsIP (j) (17)

Equation (17) provides an upper bound on a given problem
input, which we use in the following section to speed-up a
branch-and-bound algorithm for the MPTS problem.

V. ALGORITHMS TO SOLVE THE MPTS PROBLEM

In this section we present various algorithms for solving
the MPTS problem. We first present the Match + Iterated-
Local-Search (M+ILS) algorithm, a distributed algorithm that
builds on the problem structure introduced in Theorem 1 to
quickly find a solution to the MPTS problem. We then look at a
modified version of the classic branch-and-bound algorithm –
termed branch-and-match – that utilizes our solution existence
work in Section IV and our upper bound on a solution from
(17) to speed-up solve time.

A. Match + Iterated-Local-Search Algorithm

Observe that (15) will increase as more drones are assigned
to tasks that already have dj drones. This is particularly
true for tasks with smaller values for (14). Furthermore, if
any task j has less than dj drones assigned to it, then (15)
evaluates to zero. This observation motivates our proposed
M+ILS algorithm. For each task j, the algorithm attempts
to assign the dj best suited drones to the task in an initial
solution and leaves the remaining drones free. The remaining
drones can then be used to perturb the search space while
running a distributed variation of the ILS algorithm. We will
first look at how to find an initial solution then discuss our
adapted ILS routine. Algorithm 1 shows the outline of the
M+ILS algorithm.

We introduce the algorithm as a distributed solution but a
centralized version can easily be implemented by placing the
algorithm into a loop and iterating over each drone. For the
distributed version of the algorithm, we assume that each drone
knows its own probability of contributing to each task. We
argue that this assumption is reasonable because each drone
could monitor the status of its battery and calculate (6). We
also assume that each drone knows dj , its own capabilities
vector cik, and the requirements vector of each task rjk, but
has no knowledge of the probability that any other drone can
contribute to a task or what the capabilities of the other drones
are. We also assume that the drones have a numbered ordering
and are wirelessly connected through one or more hops.

The idea behind our approach to finding an initial solution
is to map the problem into a balanced matching problem
with n workers (drones) and n jobs (tasks), where some jobs
represent actual tasks and others are “null-jobs” that are not
associated with any task. Figure 3 shows an example of how
we form this balanced matching problem. We first create
dj jobs for each j ∈ J , shown as j.k for 1 ≤ j ≤ m
and 1 ≤ k ≤ dj in the figure. These jobs represent the
minimum number of drones that must be assigned to tasks
in the original MPTS formulation. We are required to assign a
total of nr =

∑
j∈J dj drones to the tasks in MPTS and have
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Fig. 3. Matching problem example for the M+ILS algorithm.

nf = n−nr floating drones that are not required to complete
the tasks but can be used to reinforce the other drones in the
case of failure. We create nf additional null-jobs, indicated as
an “x” in the example. We now have n workers and n jobs.

For each worker-job combination, where the worker repre-
sents drone i and the job represents task j, we set the cost
of the worker doing the job to qij = 1 − pij , the probability
that drone i fails to contribute to task j. For any drone-to-task
combination where the drone does not meet the capabilities of
the task, we set a cost of M , some arbitrarily large number.
For all null-jobs (i.e. “x” in the figure), we assign a cost
of 1 because drones that do not get assigned to a task will
fail to complete a task with probability 1. This entire process
is done on each individual drone on line 1 of Algorithm 1,
where wi is a vector of task weights for drone i. For example,
w1 = [q11, q11,M,M,M, 1]T in the example from Fig. 3. We
note that this method is slightly different from the mapping
discussed in Section IV but can be used to determine if a
solution exists by the same proof used previously.

The drones then find an initial matching of drones to tasks

Algorithm 1 M+ILS
Function: Start():

1: wi ← calculateWeights()
2: X ← HungarianMethod(wi)
3: Iterated-Local-Search(X )

Function: Iterated-Local-Search(X ):
4: if no changes made to X since last iteration then
5: stop algorithm
6: else if ∃j ∈ J where

∑
i∈I xij < dj then

7: assign robot to j in X
8: else
9: j ← localSearch(X )

10: assign robot to j in X
11: end if
12: if neighbor still up then
13: send X to neighbor
14: else
15: erase neighbor’s entry in X
16: send X to next neighbor
17: end if



using the Hungarian method (on line 2). There are several
distributed versions of the Hungarian method in existing
literature (see [14]–[17]). We recommend Giordani’s version
of the algorithm in [14] because it does not require the drones
to share all of their capability information and can adapt to
failures. A brief description of this algorithm is found in
Section II but we refer the reader to [14] for a more detailed
description.

After finding an initial matching, the drones form solution
X , a 2 × m matrix where xi1 stores which task drone i is
currently assigned to and xi2 stores the probability that the
drone can contribute to this task. The drones then begin the
ILS portion of the algorithm (line 3) and pass X from drone-
to-drone in ascending order.

When drone i receives table X , it searches for a task j
that does not have at least dj drones assigned, checking tasks
in descending order of pij (line 6). If there exists a task j
with less than dj drones assigned, and the drone is capable
of performing task j, then drone i assigns itself to task j (i.e.
the drone sets xi1 = j and xi2 = pij). This section of the
algorithm is needed should a drone drop-out of the system
or if the Iterated-Local-Search() function is run by itself (as
shown in Section VI as a baseline method). If no such task
exists, then the drone runs a local search by iterating through
all tasks that the drone is eligible to perform and computing
(15) to find the task that maximizes the objective (line 9). Once
assigned to a task, the drone passes X to its next neighbor.
Should the next drone in the order fail (line 12 is false), then
drone i removes drone i + 1’s entry in X and sends X to
drone i+2. The algorithm ends when n iterations have passed
without any drone making an update in X .

As presented, the computation time of the algorithm will de-
pend on the selected distributed Hungarian method. Giordani’s
implementation has a global computation time of O(n3) with a
message complexity of O(n3). In the worst-case, the Iterated-
Local-Search() function will run in O(m · n2) - the time re-
quired to compute (12) for every task - on each drone for each
iteration. However, because each drone can only be assigned
to a single task, the computation time for (12) is expected
to be O

(
( nm )2

)
, making the amortized runtime for a single

iteration of the function O
(
n2

m

)
. We can guarantee that the

Iterated-Local-Search() function converges in a fixed number
of iterations by only allowing task changes if δj ≥ ε, ε ∈ [0, 1].
That is, a drone can change tasks only if the improvement
in the objective function is greater than ε. In this case, the
function will run for at most 1

εn iterations and will pass at
most 1

εn messages in the worst-case, giving the Iterated-Local-
Search() function a computation time of O

(
n3

εm

)
. This means

that the Hungarian method will dominate and the computation
complexity of the M+ILS algorithm is O(n3). However, we
hypothesize that the Iterated-Local-Search() function is likely
to converge after m iterations, making it complete in n2 time.
Additionally, there are alternative distributed implementations
of the Hungarian method that trade-off information privacy
for speed (see [16]) that could be used without changing the

structure of the M+ILS algorithm.

B. Optimal Solution: Branch-and-Match (BnM)

Our branch-and-match algorithm conceptually works the
same as the classic branch-and-bound approach. We iterate
through each drone, assigning them to individual tasks in turn
and record when we find a better solution. We modify the
traditional algorithm by considering two methods for pruning
a branch. Given a partial assignment, we prune a branch if:

1) The upper bound on a solution by holding the partial
assignment and solving (17) on unassigned drones is
less than the incumbent solution, or

2) No solution exists to the sub-problem formed from the
unassigned drones and unfilled tasks.

To check for the second condition, we remove drones that were
assigned from the problem and reduce each dj (the minimum
number of drones required to complete task j) by the number
of drones that were already assigned to task j. We then use the
linear matching routine described in the proof of Theorem 1 to
determine if a solution exists in the sub-problem. Additionally,
we can further speed up the algorithm by using a heuristics-
based algorithm to find an initial incumbent solution (a so-
called “warm start”) or by sorting drones so that the drones
that are able to perform the most tasks are considered first.
The motivation for sorting the drones is that this locks in the
more capable drones early in a branch and lowers the upper
bound by leaving less capable drones unassigned.

Our custom branch-and-bound algorithm will find the opti-
mal solution. However, the algorithm will run in O

(
mn
)

in the
worst-case and is not feasible for larger inputs. This approach
is also not ideal in a distributed environment, should the drones
need to rerun the algorithm online, further motivating the need
for our M+ILS algorithm.

VI. PERFORMANCE EVALUATION VIA SIMULATION

We implemented both centralized and decentralized versions
of the M+ILS algorithm, as well as the branch-and-match
(BnM) solver, in C++. The centralized M+ILS uses a central-
ized, open source implementation of the Hungarian method1.
For the decentralized implementation, we used socket pro-
gramming and implemented Giordani’s distributed version of
the Hungarian method, as described in [14]. In this section, we
will use the abbreviation “dM+ILS” to refer to the distributed
version and M+ILS to refer to the centralized version.

A. Realistic Inputs

To the best of our knowledge, there is no public dataset
on drone energy statistics or thorough experiments needed to
determine γ. To cover this gap, we used drone data from the
drone fleet used by the U.S. Department of Interior (DOI)
[32] to make our simulations and case study more realistic.
The drones considered for this problem are listed in Table II,
where model 1 is the Matrice 600 Pro2, 2 is the Mavic Pro2, 3
is the FireFLY6 Pro3, 4 is the 3DR Solo4, 5 is the Pulse Vapor

1github.com/mcximing/hungarian-algorithm-cpp 2DJI, www.dji.com
3BirdsEyeView Aerobotics 43DR, www.3dr.com



TABLE II
DRONE SPECIFICATIONS

Drone Model 1 2 3 4 5 6
mvi (m/s) 18 20 30.5 25.5 11 15
msi (s) 740∗ 990∗ 2400 270∗ 1800∗ 720∗
hsi (s) 1080 1740 1200 1080∗ 2700 1080∗
Sensors 2, 3, 5 1, 4 2, 4 3 1, 3, 5 4

* estimated value

55TM5, and 6 is the Parrot Anafi6. The sensor types are 1 for
EO/IR Camera, 2 for Thermal Camera, 3 for HD Camera, 4
for 4K Camera and 5 for a Lidar. The values in the table were
either found in [32], provided by the manufacturer, or were
estimated as indicated.

To calculate the probability that a drone can contribute to a
task, we used Equ. 6 with γ = 0.25 and the values provided in
Table II. This value for γ means that we have a 25% interval
of confidence on our prediction of the total time duration that
each drone can travel at max speed. In [30] they experimentally
determined that the degradation rate of a battery ϕ ≈ 0.0005,
which allows us to determine r(c), the percent drop in battery
capacity after recharging c times.

Using the drone data in Table II, we generated four sets
of MPTS problem inputs. Set 1 has randomly located tasks
in a 5 km × 5 km space with task times varying from 5 to
15 minutes and randomized sensor requirements. We deployed
drones from Table II at random starting points with randomly
set values for c between 0 and 400. We varied the number of
drones from 5 to 30 (in increments of 1) and set the number of
tasks to be 25% the number of drones with 25% of the drones
available as floating agents. Set 2 has the same setup as Set 1,
but increments the number of drones from 4 up to 40, initially
in increments of 1 up to 8 drones, then in increments of 4.
Set 3 again copies the general setup of Set 1 except that the
number of drones is fixed at 15 with 3 tasks and the number
of floating agents varying from 0 up to 12. Set 4 varies the
number of drones from 50 up to 150, in increments of 10.
There are multiple base stations (equal to 10% of the number
of drones) that are scattered throughout a 3 km × 3 km space.
Drones are assigned to a specific base station and begin within
a 50 m radius of their assigned base station. For all data sets
we generated 50 inputs for each distinct configuration, giving
us a total of 1,300 inputs for Set 1, 650 inputs for both Set 2
and 3, and 550 inputs for Set 4.

B. Baseline Methods

We consider four different baseline approaches to compare
against our proposed heuristics-based algorithm. In the first
baseline method we form a balanced matching problem as
described in Section IV with slight modifications. Rather than
setting costs to 1 or 0, we set the cost for each drone-to-task
combination to qij = 1 − pij if drone i can perform task
j, and some arbitrarily large number M otherwise. We then
solve the balanced matching problem using the centralized
Hungarian method. We refer to this approach as the Balanced

5AeroVironment, www.avinc.com 6Parrot Drone SAS, www.parrot.com

Matching (BM) algorithm. The intuition behind BM algorithm
is that minimizing the sum of probabilities that the drones
will fail at their assigned task is a good proxy for solving
(15) and promises to always find a solution, if one exists.
Our second baseline approach is to run the Iterated-Local-
Search() function from the M+ILS algorithm without running
the matching portion of the algorithm first (ILS). The first
two baseline approaches were chosen to determine the utility
of each part of the M+ILS algorithm individually.

As a third baseline, we implemented a distance minimizing
algorithm (MinDist) that puts the probability of failure into its
constraints. We form a balanced matching problem by setting
the cost for drone i to perform task j as the total distance that
i would have to travel to perform j and restrict i from being
assigned to j if pij < 0.5. We then find the minimum drone-
to-task assignment using the Hungarian method. We chose this
as a baseline because many related works use a “limit risk”
type approach for assignments while minimizing some other
criteria [11], [12], [26], [33].

For a fourth baseline, we implemented the VLSN algorithm,
as initially described in [8]. The VLSN algorithm takes an
initial solution and iteratively searches for a reassignment by
attempting to swap the assignment of two or more drones. If
a reassignment is found that yields a higher objective function
value, then that solution is stored as the incumbent solution.
The algorithm checks all possible swaps from 2 up to 5
drones at once and uses our first baseline algorithm to find an
initial solution. We chose this baseline because it was found
to perform well for the WTA problem [8], [9].

C. Simulation Results

We ran our proposed algorithms on the input sets described
above to compare their performance against the various base-
line methods. All experiments in the subsection were run on
a machine with an Intel 3.4 GHz 16-Core CPU and 64 GiB
of RAM.

1) Performance Versus Optimal Solution: We used Set 1
to evaluate how increasing the number of drones impacts
performance by comparing each algorithm’s output against
the optimal solution found using our BnM algorithm. The top
graph in Fig. 4 shows the average ratio of the found solution
over the optimal solution of each input (a ratio of 1 means
that the algorithm found the optimal solution). We stopped
running the experiment when the number of drones reached 19
because the BnM algorithm became too slow after this point.
On average, our M+ILS algorithm was within 2.68% of the
optimal solution. All baseline algorithms initially performed
fair but then began to diverge from the optimal as the number
of drones increases. The best performing baseline approach
was the ILS algorithm, with solutions averaging within 10.61%
of the optimal. The bottom graph in Fig. 4 shows the average
percent gap between the optimal solution and the upper bound
found using (17). The average gap is 24.3% but is much tighter
when there are fewer drones (eight or less).

2) Performance at Scale: We next used Set 4 to evaluate
how well the heuristic-based algorithms perform on much
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larger inputs. The top graph in Fig. 5 shows the average ratio
of the found solution for each algorithm over the best found
solution for each input (a ratio of 1 means that the algorithm
found the best known solution). The M+ILS algorithm found
the best solution for every input while the ILS algorithm,
although in clear second place and better than the other
baseline approaches, begins to struggle as the number of
drones greatly increases. The bottom graph of Fig. 5 shows
the average probability that any individual task is completed
– calculated using Equ. (12). Although Equ. (12) is not our
considered objective function, we include this data because
if an algorithm is finding assignments that are consistent the
objective should trend downwards as the number of tasks
increases (e.g. 0.992 � 0.99100). The plot shows us that the
ILS algorithm struggles to find good assignments across all
tasks when there are a large number of drones while the other
approaches trend slightly upward with the M+ILS algorithm
consistently well ahead of all other approaches.

3) Impact Of Floating Agents: We evaluated how the
number of floating agents impacts performance by running
our centralized solution on Set 3, where the number of drones
and tasks are fixed at 15 and 3, respectively, but the number
of floating agents varies from 0 up to 12 (80% of the drones).
The top graph in Fig. 6 shows the average ratio of the
found solution over the optimal solution found using the BnM
algorithm. The plot shows that when all drones are required for
a problem input (i.e. 0% floating agents) the M+ILS algorithm
performs comparably to both the BM and VLSN methods.
However, as the number of floating agents increases the BM
and VLSN algorithms begin to struggle while the M+ILS
improves and averages within 2.45% of the optimal over all
inputs from data Set 3. The ILS algorithm initially performs
very poorly compared to all other methods. Without any
floating agents to switch between tasks, the ILS algorithm is
essentially a greedy algorithm. However, the algorithm quickly
trends towards the optimal as the percent of floating agents
increases, beating all other baseline algorithms once 13% of

TABLE III
COMPUTATION TIME (SECONDS) – EXACT METHODS

# Drones 9 11 13 15 17 19

BnB 1.02·103 7.68·103 0.740 1.23 582.3 -
BnM 0.56·103 7.90·103 0.183 0.921 26.1 541.4

the drones are floating agents and averages within 7.64% of
the optimal solution after this point.

4) Finding Valid Solutions: We also used Set 3 to evaluate
how often each algorithm finds a valid solution. The bottom
graph of Fig. 6 shows the percent of inputs where the algorithm
fails to find a valid solution. The ILS algorithm slightly
struggles when there are no floating agents available, failing
on 2% of the inputs. This algorithm acts as a greedy solution
when there are no floating agents available so we can anticipate
that the algorithm will sometimes fail here. The MinDist
algorithm struggles greatly at finding valid solutions, failing
on 30.06% of the inputs. This is because of our constraint
that no task will be considered when pij < 0.5, leading the
algorithm to not consider valid solutions that might expose
one or more of the drones to higher risk of failure. All other
considered algorithms found valid solutions for all inputs and
were omitted from the bottom graph of Fig. 6 to reduce clutter.

5) Computation Time (Centralized): Table III shows the
computation time of the BnM algorithm compared to the
classic branch-and-bound (BnB) approach that does not use
the branch cutting techniques discussed in Section V-B. The
classic BnB algorithm got stuck on inputs larger than 17
drones and 5 tasks. Our proposed BnM algorithm reached
19 drones before becoming too slow to compute solutions in
a reasonable time. Table IV shows the average computation
time of centralized versions of the heuristics-based algorithms
as the number of drones grows. Our M+ILS algorithm handled
large inputs quite well, averaging only 154 ms on inputs with
150 drones and 38 tasks. This was only topped by the MC
algorithm, which averaged 118 ms on the 150 drone inputs.
Notably, the VLSN algorithm struggled greatly as the number
of drones increased.

6) Packet Count and Computation Time (Distributed): We
used Set 2 to evaluate the performance of the distributed
implementation of the M+ILS algorithm and a distributed

TABLE IV
COMPUTATION TIME (SECONDS) – HEURISTICS-BASED (CENTRALIZED)

# Drones 30 50 70 90 110 130 150

BM 1.1·103 5.2·103 1.8·102 5.9·102 0.170 0.406 0.856
ILS 3.9·103 6.3·103 1.2·102 2.7·102 4.8·102 7.5·102 0.118
MinDis 1.2·103 4.3·103 1.5·102 5.2·102 0.139 0.339 0.713
VLSN 0.273 3.47 26.6 97.1 340.9 800.7 1461
M+ILS 2.4·103 6.3·103 1.4·102 3.1·102 5.8·102 0.100 0.154



version of the ILS algorithm (dILS). We chose to only run the
ILS baseline for this evaluation because it was shown to be
notably better in solution performance and computation time
compared to the other baseline approaches on Set 1 (which has
a similar setup to Set 2). Figure 7 shows the average number
of packets sent over a socket (left y-axis in log scale) and
the average computation time (right y-axis). The number of
packets required for the dM+ILS algorithm grows much faster
than the dILS algorithm, averaging 26,400 packets compared
to only 219, respectively, when there are 40 drones. This leads
to polynomial growth in computation time for the dM+ILS
algorithm while the dILS algorithm grows near linearly with
the number of drones.

7) Summary of Major Findings: Our simulation results
show that the centralized version of our M+ILS algorithm
performs very well across all considered scenarios (increas-
ing number of drones, increasing percent of floating agents,
finding valid solutions). The algorithm also runs very fast
when implemented as a centralized solution. However, the
distributed version of our algorithm (dM+ILS) requires a
lot of message passing, leading to higher computation times
when compared to the most competitive baseline approach.
The computation time and message complexity of the al-
gorithm could be improved by swapping out our chosen
implementation of the distributed Hungarian method with the
version presented in [16], which sacrifices capability privacy
for algorithm efficiency. Changing the distributed Hungarian
method implementation would not require structural change to
our proposed algorithm.

D. Case Study Results

Returning to our case study in Fig. 1, let Tasks 1 and 3 be to
monitor how the fire is moving along its boundaries while Task
2 is to provide personnel monitoring for firefighters close to
the center of the fire. Task 4 is a preventative monitoring task
for early fire detection near the giant sequoias. Tasks 1 and 3
require at least two drones with HD cameras for 10 minutes,
Task 2 requires four drones equipped with both IR and HD
cameras for 14 minutes, and Task 4 requires two drones with
thermal cameras for 8 minutes. A total of 15 drones are to
be launched from the two launch locations shown in Fig. 1.
Five model 5 drones with older batteries (350 cycles) will
be launched from location 1. Four model 1 (10 cycles), two
model 2 (100 cycles), two model 3 (150 cycles), and two
model 6 (250 cycles) drones will all be launched at location
2. The drones must fly from their respective launch points to
their assigned tasks, then must fly out to the base station after
completing their assigned tasks.

TABLE V
COMPUTATION TIME (SECONDS) ON TESTBED

# Drones 4 5 6 7 8

dILS 0.142 0.206 0.552 0.211 0.244
dM+ILS 0.961 1.742 2.804 4.412 4.785

Fig. 8. The Raspberry Pi 3B+s used in physical testbed.

We ran our case study problem input on our two proposed
algorithms and the ILS baseline. Our BnM algorithm found
an optimal assignment with a 91.67% chance of completing
all tasks while the M+T algorithm found a near optimal
assignment with a 90.96% chance of completing all tasks. The
BM, ILS, MinDist, and VLSN approaches all trailed behind,
finding solutions of 76.28%, 84.88%, 19.32% and 76.28%,
respectively. The BnM algorithm finished in 120 ms while
the M+T, BM, ILS, and MinDist algorithms all completed in
under 10 ms. The VLSN algorithm took 30 ms. These results
follow the same pattern we found previously and support our
result analysis from the numerical simulations.

VII. PERFORMANCE EVALUATION IN THE FIELD

To better understand the impact of increased message
passing in a realistic distributed environment, we deployed
both the dM+ILS and dILS algorithms on a physical testbed.
We again chose to run only the dILS baseline on the test
bed because of its superior performance compared to the
other baseline methods. Our physical testbed consisted of an
array of eight Raspberry Pi 3B+ (one mounted on a drone
and the other seven free standing) that we deployed in a
large courtyard area shown in Fig. 8. The Raspberry Pi were
arranged throughout the courtyard, varying between 5 and 50
meters apart, and communicated via WiFi using Ad-Hoc mode.
We used Raspberry Pi 3B+ because they are commonly used
as an onboard computer for drones.

We ran inputs from the second test set (where the number
of drones ranges from four up to eight) on the testbed. Table V
shows the computation time as the number of drones increases
while Table VI shows the average ratio of the found solution
for each algorithm over the best found solution (a ratio of
1 means that the algorithm found the best known solution).
We again see the same trend, where the dM+ILS algorithm
outperforms the baseline but at the cost of computation time.
The time delay becomes exacerbated on the physical test
bed where data packets must be transmitted over WiFi. As
discussed in Section VI-C, we could improve the performance

TABLE VI
FOUND SOLUTION OVER BEST FOUND SOLUTION ON TESTBED

# Drones 4 5 6 7 8

dILS 0.998 0.991 0.981 0.945 0.956
dM+ILS 0.999 0.998 0.999 0.999 0.996



of the algorithm by implementing a more efficient version of
the distributed Hungarian method at the cost of data privacy.

VIII. CONCLUSIONS

In this paper we formulated the Maximum Probability of
Task Success (MPTS) problem, a task assignment problem that
seeks to maximize the probability that all tasks are complete.
We applied the problem to a wildfire monitoring scenario
and proposed both a centralized, optimal solution (Branch-
and-Match) and a distributed approach (M+ILS) that finds
near-optimal solutions in polynomial time. We evaluated our
two proposed algorithms in extensive simulations and ran our
M+ILS algorithm on a physical testbed. Our Branch-and-
Match algorithm is computationally faster than the classic
branch-and-bound algorithm but does not scale well with the
number of drones. Our M+ILS algorithm averages solutions
within 2.68% of the optimal solution but at the cost of time
and message complexity when compared to other alternative
baseline methods.

Future work should focus on further developing and eval-
uating methods for modeling the probability that a drone
can complete a task based on environmental factors and
onboard energy. This will require extensive field experiments
on physical hardware. Furthermore, we made the assumption
that the probability of each drone contributing to a task is an
independent event. Removing this assumption could lead to
new variation of the MPTS problem and should be considered
in future work. We also see area for expanding the considered
application, such as including wait times when drones move
from one task to another or extending the problem to include
cooperative teams of both drones and ground robots.
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