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Rotary-wing Unmanned Aerial Vehicles (commonly referred to as drones) are versatile autonomous transportation platforms that can

be used for a variety of data collection applications including emergency response, environmental monitoring, surveillance, and many

others. In this work, we investigate how to plan efficient paths that minimize mission completion time for drone data collection where

the drone must rendezvous with a moving ground vehicle (GV) that cannot stop and wait for the drone. Moreover, we address the

limited onboard energy storage issue by adapting drone speed. We propose a mixed-integer nonlinear program (MINLP) solution to

solve this problem to optimality and provide two heuristics-based alternative solutions (the k-TSP and D-TSP approaches) that are

more computationally tractable. We evaluate these approaches in extensive simulations using real drone characteristics to highlight

their trade-offs. Our results show that the k-TSP algorithm performs well when data collection points are closer to the GV, averaging

within 4.5% of the optimal solution, while the D-TSP approach is more versatile, finding solutions in situations where the k-TSP

algorithm tends to fail. Furthermore, we show that adapting drone speed can improve solution quality by up to 47.1% compared to

fixed-speed approaches. In summary, this article serves as an exploratory study in energy-aware planning and scheduling for drones

and other autonomous transportation systems.
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1 Introduction

Rotary-wing Unmanned Aerial Vehicles (i.e., drones) can easily move over rough terrain and water, are low-cost,

commercially available, and can be deployed quickly. This makes themwell-suited for various data collection applications

such as emergency response, environmental monitoring, agriculture, and surveillance. Studying how to deploy drones

will better enable them as autonomous systems and facilitate their adoption into society.

A common requirement in these applications is minimizing mission completion time. Intuitively, this implies that we

want to find an optimal path for a drone to follow while maximizing the drone’s speed. However, drones have limited

onboard energy storage and there is a trade-off between speed and energy consumption [54, 66], where maximizing

speed does not maximize travel distance due to a higher energy consumption rate (which is further discussed in

Section 4). We see a lack of existing research on how to integrate this tradeoff into planning algorithms. Any robust

path planning approach should consider the speed-energy consumption trade-off and plan for recharging or battery

swaps.
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2 Jonathan Diller and Qi Han

In many applications, drones often work with GVs which provide battery recharging, battery swap, data offloading,

etc. Collaborative drone-GV problems have already been well studied [10, 60, 64]. However, these existing works assume

that the GV can stop and wait for the drone to return. While a drone completes its given tasks, the GV deploying the

drone may need to continue moving rather than wait at the starting location for the drone to return. One example

of this is a large ship on a maritime search and rescue mission, such as those recently seen in the Mediterranean sea

where migrants frequently become stranded on failing vessels [30]. The drone can be deployed to inspect minor areas

of interest while the main search and rescue ship continues along a preplanned trajectory. Other examples include

drones used in urban environments for package delivery or to assist first responders while relying on volunteer vehicles

for ride hitching [48]. In such applications, drone path planning algorithms must account for the movement of a GV

that is following a preplanned trajectory.

In this work, we seek to answer the research question: How do we plan energy-aware drone paths and rendezvouses

with a non-stopping GV for general data collection applications? To this end, we consider the trade-offs between drone

speed and total travel distance and propose various speed-adapting algorithms. This article expands on our previously

published conference paper [16]. For completeness and context, major parts of our previous publication are included in

this manuscript. We expand on the previous publication in the following ways.

(1) We remove the assumptions made in our previous work that the drone will be launched at mission start time

(𝑡 = 0) and that subsequent launches happen immediately after swapping batteries on the drone (found in

Section 7). Selecting a launch time is now part of the considered problem.

(2) We provide a complete solution to the problem as a whole (in Section 7.1) and prove that the problem is NP-Hard

(in Section 3). Our previous publication only provided a complete solution for an underlying Hamiltonian Paths

Problem found when fixing the start and stop time of each drone sub-tour and commented on the hardness of

the underlying problem.

(3) We expand our literature review to include more recent related work on this topic (in Section 2).

(4) We expand on the simulation evaluations. In addition to more randomly generated inputs (presented in Fig. 6b, 7,

and 11b), we also evaluate our solution on non-linear GV trajectories (presented in Fig. 10).

In the next section, we discuss related works and how they compare to our body of research. In Section 3 we formally

define the considered problem, termed Minimum-Time while On-the-Move (MT-OTM), then discuss our drone energy

model in Section 4. In Section 5 we present our solution framework for the MT-OTM Problem and then further discuss

details of our various proposed algorithms in Sections 6 and 7. In Section 8 we provide simulation results and discuss

the details of our simulation setup while Section 9 details our field test prototype of the MT-OTM Problem using a

physical drone. Finally, we discuss the conclusions of our study and provide closing remarks in Section 10.

2 Related Work

In this section we review recent works in literature with a focus on drone path planning algorithms for mixed drone

and GV problems. We also review drone energy models and how they have been applied in drone path finding. For

clarity, we refer to unmanned variations of GVs as Unmanned Ground Vehicles (UGVs). The term “GV” may include

both manned and unmanned vehicles.
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2.1 Multi-Drone Path Finding

Outside of coordinated drone-GV teams, there has been extensive research on path finding for drone swarms with

common proposed applications in data collection, package delivery, and supporting wireless infrastructure [1, 2, 9, 57].

These path finding problems are usually presented as variations of the Vehicle Routing Problem (VRP) or the Multi-

Traveling Salesman Problem (MTSP) [25, 31, 62]. In the MTSP, we are given a set of salesmen that are deployed from

the same depot and a set of stops that must be visited by at least one salesman and are ask to find efficient paths for the

salesmen such that all stops are visited [8]. The VRP extends the MTSP by allowing vehicles to start from multiple

depots, with variations including capacity constraints, time windows, or pick-ups and deliveries, just to name a few [11].

Common solution approaches include both exact methods and heuristics-based algorithms. Math optimization

approaches (such as mixed integer programming) are largely popular for exact methods [25, 31, 47, 62]. Heuristics-

based solutions commonly simplify the problem into smaller graph search problems [52, 53] or simplify the problem

into the classical Traveling Salesman Problem (TSP) and utilize well-studied heuristics-based solutions, such as the

Lin-Kernighan-Helsgaun heuristic [18, 50], genetic algorithms [58], or ant colony optimization [40].

2.2 Mixed Drone & Ground Vehicle Path Finding

Many previous works look at cooperative problems involving drones and GVs where a series of waypoints must be

visited. In [60] they consider an application where either a drone or a UGV must be within some distance of a set of

waypoints, which is modeled as an orienteering problem, a problem with known algorithms. In [32] they consider

drone path planning where a GV can be used to swap-out batteries on the drone but is constrained to a network of

streets. They propose treating all drone waypoints as a single TSP, then breaking up the route into sub-tours. This

work was further expanded in [3, 33] where they propose a mixed-integer linear programming (MILP) solution. A

related scenario is considered in [64, 65], where a UGV can ferry around the drone. The authors model the problem as a

Generalized TSP and apply a known solution approach [39]. A similar problem is found in [12], where they first plan

GV routes along a road network then plan drone routes using Conflict-Based Search. A similar problem was looked at

in [43] and extended in [44], where multiple drones are deployed with a single UGV. The drones must visit mission

waypoints while the UGV provides recharging for the drone but is not restricted to a road network. A further extension

is found in [17], where the authors use convex optimization to select rendezvous points. They solve this problem by

first using a clustering algorithm and a TSP solver to find a path for the UGV then plan drone paths with a set of fixed

recharging locations. An iterative solution to this problem setup is found in [59] while [13] looks at how to represent

the problem as an agent-based model with behavior trees and finite state machines. A common theme in all of these

works is that the GV can stop and wait for the drone to finish flying a sub-tour of waypoints, which often allows the

problem to be modeled as a traditional graph theory problem and solved using known techniques. In contrast, our work

considers how to plan drone paths when the GV cannot stop and wait for the drone. This means that we must consider

the trajectory of the GV as part of the problem.

A related set of drone and GV problems is the drone parcel delivery problem, where a delivery truck, bound to a

network of streets, acts as a launching point for a drone to deliver a package in a last-mile delivery system [36]. These

scenarios can largely be broken into two catagories: (1) where the drones can only make a single delivery stop per sortie,

as seen in [38, 42, 49, 61], and (2) where the drones are allowed to deliver multiple packages per sortie [24, 31, 34, 41].

These problems are usually solved by breaking down the larger problem into smaller ones that can be handled using

math programming techniques [10]. Most of the literature on this set of problems allows for one of the vehicles to stop
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4 Jonathan Diller and Qi Han

and wait for the other. However, in applications over water or rugged terrain, the drone cannot land to wait for the GV

and hovering is energy intensive.

Another set of related problems looks at selecting rendezvous locations for a drone to be recharged by a GV. In

[35], the authors plan where a GV should meet up with a drone on a fixed route by converting the problem into the

Generalized TSP and solve it using both integer programming and the Lin-Kernighan-Helsgaun (LKH) heuristic [20]. In

[55] both the drone and UGV have established paths and must select rendezvous points that are ideal for both vehicles,

which is done using a Markov Decision Process. The work in [55] was further extended in [4] to include multiple UAVs

and multiple UGVs. Rather than looking at the trade-off between varying drone speeds, these works looked at the

risk of running out of battery and used this metric to determine how often the drone should recharge with the UGV.

Their problem setup assumes that the paths for both the UGV and UAV are already determined and is similar to the

baseline approach in our work. Although our work also selects rendezvous locations, our scenario differs from the

current literature because we consider planning rendezvouses with a non-stopping GV and fit this problem into a larger,

combined rendezvous and path planning problem.

For this work, we assume that the drone is capable of landing on the GV after rendezvousing using techniques such

as the ones discussed in [5, 68]. Landing on a moving vehicle falls out of the scope of this research.

2.3 Drone Energy Models

Drones have limited onboard energy, motivating the need to model and integrate drone energy consumption into

planning algorithms. There have been many proposed methods for modeling energy consumption in drones including:

the distance-based method [27, 32], the time-based method [26, 52], discretized approaches [14, 60, 64], and the velocity-

based method [28]. The distance-based model assigns a max travel distance and ignores or excludes time spend hovering.

The time-based method assigns a total operating time to the drone and usually does not differentiate between time spent

hovering versus time spent traveling. Discretized approaches allot an energy budget to the drone and reduce the budget

based on actions, such as flying a certain distance or hovering for some period of time. However, the authors in [38]

found that these energy modeling approaches are not as accurate as the velocity-based approach. The velocity-based

model maps the drone’s speed to power consumption based on characteristics specific to the drone. This model was

formulated separately in [66] and [28] and validated in [28, 54] through field testing on physical testbeds. Due to its

accuracy, we use the velocity-based model in this work.

The velocity-based energy model has been used in various drone path planning problems. In [38], it was applied to

the drone parcel delivery problem and in [55] it was used to better model the risk of the drone running out of energy in

a rendezvousing problem. In [42], they used this energy model to adapt drone speed as a post-processing step to further

improve mission completion time. However, mission completion time is the product of both the drone’s speed and the

distance that the drone must travel. To directly optimize completion time the energy model should be embedded in

the solution formulation. In our work, we add speed adaptation using the velocity-based energy model directly in our

mathematical formulation and evaluate speed adaptation against fixed-speed approaches for a multi-waypoint drone

problem.

3 Problem Formulation

In this section, we describe the system setup and formally define the MT-OTM problem. In general, in the MT-OTM

Problem, we are given a drone that must visit a series of waypoints while being launched from and received by a moving

GV. The drone has limited onboard energy and may need to stop several times on the GV to swap out its batteries or
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Table 1. Symbols used in the Paper

Symbol Description

𝚫𝑚 Set of𝑚 sub-tours

𝛿𝑘 Sub-tour 𝑘 , an ordered set of waypoints

𝑑𝑘 Distance of sub-tour 𝑘

𝛤𝑚 Set of𝑚 start-end time tuples

𝑃 Set of waypoints to visit

𝑝𝑑
𝑘

Depot waypoint for sub-tour 𝑘

𝑝𝑡
𝑘

Terminal waypoint for sub-tour 𝑘

𝛷𝑚 Complete drone tour with𝑚 sub-tours

𝑆𝑚 Set of𝑚 speeds for sub-tour𝑚

𝑡𝑏 Time required to swap batteries between sub-tours

𝜏𝑑
𝑘

Start time for sub-tour 𝑘

𝜏𝑡
𝑘

End time for sub-tour 𝑘

X Application space (assumed to be in R2)

recharge. Our objective is to minimize the time it takes for the drone to visit every waypoint and return to the GV.

We focus on the offline, mission planning problem of identifying efficient drone paths for visiting every waypoint in

minimal time. Online control for the drone as well as communication and coordination with the GV, although ongoing

areas of research, are assumed to function fully as intended and fall out of scope of this work.

Table 1 includes a list of symbols used in our problem formulation. Our problem formulation considers drone energy

and battery storage, which is further discussed in detail in Section 4. We acknowledge but leave out various factors in

our problem formulation that could affect flight performance such as wind and the energy consumed by making turns.

Although we do not consider these and other minor factors that can impact energy consumption, our proposed solution

is versatile and can be reapplied with a more comprehensive energy model.

Let X ∈ R2 be a large area with several navigational waypoints that must be visited. A GV that acts as a moving base

station moves through X on a predetermined, fixed route described by 𝑝𝑏 (𝑡), a function that returns the GV’s position

at time 𝑡 . That is, 𝑝𝑏 (𝑡) ∈ X for any 𝑡 ≥ 0. Without loss of generality, we assume that the origin of the two-dimensional

coordinate system for X is at the GV’s initial position at the beginning of the considered time window. Figure 1 shows

the general problem setup.

Let 𝑃 be the set of all waypoints that must be visited by a drone and 𝑝𝑖 be the 𝑖
𝑡ℎ

waypoint in 𝑃 . Due to energy

constraints, the drone may not be able to visit all of the waypoints in 𝑃 in a single tour. Let𝑚 be the number of sub-tours

required to visit every waypoint in 𝑃 , which is initially unknown. We define the 𝑘𝑡ℎ sub-tour, denoted as 𝛿𝑘 with path

length 𝑑𝑘 , as an ordered set of waypoints containing a starting position in X (a depot), an ending position in X (a

terminal), and at least one waypoint in 𝑃 . We denote the depot of sub-tour 𝛿𝑘 as 𝑝𝑑
𝑘
and the terminal as 𝑝𝑡

𝑘
. Let 𝚫𝑚 be a

set of𝑚 sub-tours such that every waypoint in 𝑃 is visited exactly once and let the set of speeds for each sub-tour in

𝚫𝑚 be 𝑆𝑚 . The time it takes a drone to travel 𝛿𝑘 while moving at speed 𝑠𝑘 ∈ 𝑆𝑚 will be

𝑡𝛿 (𝛿𝑘 , 𝑠𝑘 ) =
𝑑𝑘

𝑠𝑘
. (1)

We denote the start time of sub-tour 𝑘 as 𝜏𝑑
𝑘
and the end time of sub-tour 𝑘 as 𝜏𝑡

𝑘
. By definition, for any sub-tour 𝑘 ,

𝜏𝑡
𝑘
= 𝜏𝑑

𝑘
+ 𝑡𝛿 (𝛿𝑘 , 𝑠𝑘 ). Suppose that it takes 𝑡𝑏 seconds to land the drone on the GV and change out the battery between
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Fig. 1. General problem setup: the blue circles are navigational waypoints that must be visited by the drone, the green diamond is the
GV’s starting location, and the black, dashed arrow shows the GV’s fixed trajectory.

each sub-tour. The earliest that sub-tour 𝑘 + 1 can start is 𝜏𝑡
𝑘
+ 𝑡𝑏 . That is, 𝜏𝑑𝑘+1 ≥ 𝜏

𝑡
𝑘
+ 𝑡𝑏 . We assume that the drone

cannot be sent out earlier than the considered time horizon (i.e. 𝜏𝑑
1
≥ 0). Let 𝛤𝑚 be a set of 𝑚 {𝜏𝑑

𝑘
, 𝜏𝑡
𝑘
} tuples, for

𝑘 ∈ {1 · · ·𝑚}, where each {𝜏𝑑
𝑘
, 𝜏𝑡
𝑘
} tuple is the start and end time for sub-tour 𝑘 .

We define a complete drone tour as𝛷𝑚 = {𝚫𝑚, 𝑆𝑚, 𝛤𝑚}. We say that𝛷𝑚 is consistent if the following constraints

hold:

𝜏𝑑
1
≥ 0 (2)

𝜏𝑑
𝑘+1 ≥ 𝜏

𝑡
𝑘
+ 𝑡𝑏 , ∀𝑘 ∈ {1 · · ·𝑚 − 1} (3)

𝜏𝑡
𝑘
= 𝜏𝑑

𝑘
+ 𝑡𝛿 (𝛿𝑘 , 𝑠𝑘 ), ∀𝑘 ∈ {1 · · ·𝑚} (4)

𝑝𝑑
𝑘
= 𝑝𝑏 (𝜏𝑑𝑘 ), ∀𝑘 ∈ {1 · · ·𝑚} (5)

𝑝𝑡
𝑘
= 𝑝𝑏 (𝜏𝑡𝑘 ), ∀𝑘 ∈ {1 · · ·𝑚} (6)

Constraint 2 states that the first sub-tour cannot start earlier than the considered time horizon while Constraint 3

requires any subsequent sub-tour to not start earlier than the end time of the previous sub-tour plus the time required

to swap out batteries on the drone. Constraint 4 requires that the end time of any sub-tour is equal to the start time of

that sub-tour plus the time required to travel the distance of that sub-tour at the designated speed. Constraint 5 requires

that the position of the depot waypoint for sub-tour 𝑘 be based on the start time of that sub-tour and the GV trajectory

function 𝑝𝑏 (𝑡) while Constraint 6 holds the same requirements for the terminal waypoint of the sub-tour.
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We formally define the MT-OTM problem as:

Definition 1 (MT-OTM Problem). Given application-space X with waypoint set 𝑃 and vehicle position function 𝑝𝑏 (𝑡),
determine the number of sub-tours𝑚 and a corresponding consistent𝛷𝑚 such that 𝜏𝑡𝑚 is minimized and all waypoints in 𝑃

are visited at least once.

Solving the MT-OTM Problem is challenging. To show the problem is at least as hard as any problem in the NP-Hard

problem space, we first introduce a slightly simplified version of the problem, the Minimum-Time while On-the-Move

with a fixed number of sub-tours (fixed-Mt-OTM) problem, defined as:

Definition 2 (fixed-MT-OTM Problem). Given application-space X with waypoint set 𝑃 , vehicle position function

𝑝𝑏 (𝑡) and a number of sub-tours𝑚, determine a corresponding consistent𝛷𝑚 such that 𝜏𝑡𝑚 is minimized and all waypoints

in 𝑃 are visited at least once.

The fixed-MT-OTM Problem can easily be shown to be NP-Hard by a reduction from the TSP, a well known NP-Hard

problem [22]. In the classic TSP, we are given 𝑛 vertices in a fully connected weighted graph and are asked to find

a minimum weight cycle in the graph that visits every vertex. Our strategy for reducing TSP to the fixed-MT-OTM

Problem is to make the GV stationary.

Theorem 1. The fixed-MT-OTM problem is NP-Hard.

Proof. Select an arbitrary vertex in the TSP and set this as the starting location for the GV in the MT-OTM Problem

and setting 𝑝𝑏 (𝑡) to be this location at all input times. Map the remaining vertices in the TSP to waypoint set 𝑃 by

treating the edge weights as distances between waypoints and setting the drone’s energy profile such that it can visit

every vertex from the TSP without requiring a battery swap. An optimal solution to this fixed-MT-OTM Problem will

also be an optimal solution to the original TSP. This reduction can be performed in linear time in terms of the number

of vertices in the TSP.

As we have found a polynomial time reduction from the TSP to the fixed-MT-OTM Problem and it has been well

established that TSP is NP-Hard, then the fixed-MT-OTM Problem is at least as hard as any NP-Hard problem. □

The last part of the reduction can be done by assuming the drone has an arbitrarily large and weightless battery. Drone

energy models are further discussed in the following section.

We next show that the original MT-OTM Problem is NP-Hard by repeatedly reducing the fixed-MT-OTM Problem to

the MT-OTM Problem.

Theorem 2. The MT-OTM problem is NP-Hard.

Proof. With 𝑚 = 1, solve the MT-OTM Problem input as a fixed-MT-OTM Problem. Increment the value of 𝑚,

solve the fixed-MT-OTM Problem with this new value of𝑚, then repeat the process until𝑚 = 𝑛. The value of𝑚 and

corresponding consistent𝛷𝑚 with a minimal value for 𝜏𝑡𝑚 that was found when solving the fixed-MT-OTM Problem

will be the optimal solution to the MT-OTM Problem. This reduction can be performed in polynomial time in terms of

the number of waypoints in 𝑃 .

As we have found a polynomial time reduction from the fixed-MT-OTM Problem to the MT-OTM Problem and we

showed that the fixed-MT-OTM Problem is NP-Hard, then the MT-OTM Problem must also be at least as hard as any

NP-Hard problem. □
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As shown in our hardness proof, solving the MT-OTM Problem could be simplified to finding a single drone sub-tour

(i.e. finding an optimal𝛷1) if the drone has enough on-board energy to complete𝛷1 without needing to stop to swap

out batteries. However, this will not be the case in more interesting application scenarios and the drone will have to

perform multiple sub-tours. This requires us to consider how drones consume energy in our solution.

4 Adaption of Drone Speed

To find a realistic solution to the MT-OTM Problem for non-arbitrary inputs, we need an accurate model for how drones

consume energy. In this section, we summarize previous works that looked at how drones consume energy and we

discuss the trade-off between maximizing a drone’s speed versus maximizing a drone’s travel distance.

Previous work has determined the amount of power consumed by a drone at varying speeds [28, 66]. From [66], we

see that propulsion power consumption of a rotary-wing drone as a function of speed 𝑣 can be approximated as:

P(𝑣) ≈ 𝐶0

(
1 + 3𝑣2

𝑈 2

𝑡𝑖𝑝

)
+ 𝐶𝑖𝑣0

𝑣
+ 1

2

𝑑𝑜𝜌𝑠𝑟𝐴𝑣
3, (7)

where 𝐶0 and 𝐶𝑖 are constants representing blade profile power and induced power, respectively,𝑈𝑡𝑖𝑝 represents the

tip speed of the drone’s propellers, 𝑣0 is what is known as the mean rotor induced velocity while hovering, 𝑑0 is an

aircraft-specific drag ratio, 𝑠𝑟 is rotor solidity, 𝜌 is the air density and 𝐴 is the rotor disk area.

Equation 7 is highly dependent on specific aircraft parameters and will change from aircraft to aircraft, but in general,

this function has the shape of an upwards-facing parabola as shown in Fig. 2a. The exact values for each parameter in

Eq. (7) can be experimentally determined for individual drones, as demonstrated in [54]. Drone payloads will impact

the values of these parameters and we assume that these values are known a priori for the drone and its payload. For a

more detailed summary on drone energy models over varying drone types, we refer the reader to more comprehensive

studies on this topic in [66, 67].

Many drone applications depend more on the total distance that a drone can travel as opposed to just the amount of

energy consumed. The relationship between speed and the total distance depends on the voltage that a battery supplies
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Fig. 2. Graph 2a shows the relationship between a drone’s speed and power consumption (Eq. 7) using experimental data in Ref. [54].
Graph 2b shows the relationship between a drone’s speed and its max travel distance (Eq. 9).
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to the drone and the rate that the battery discharges. We can represent this relationship as:

D(𝑣) = 𝐵𝑟𝑎𝑡𝑒𝑉𝑏𝑎𝑡𝑣

P(𝑣) , (8)

where 𝐵𝑟𝑎𝑡𝑒 is the rate of battery discharge in amp-seconds and 𝑉𝑏𝑎𝑡 is the voltage of the battery. In practice, 𝑉𝑏𝑎𝑡

should be set lower than what the battery is rated for to ensure a safety buffer for uncertainty.

Equation (8) has the following general form (Fig. 2b):

D(𝑣) = 𝑣

𝑣3 + 𝑣2 + 1

𝑣

. (9)

Intuitively, to minimize total mission time, we will want to maximize the drone’s speed. It was found [66] and then

verified experimentally [54] that in order to achieve maximum traveling distance, the drone must travel at a lower

speed than its maximum possible speed. Let 𝑑𝑚𝑎𝑥 be this maximum achievable distance and 𝑣𝑜𝑝𝑡 be the speed that

achieves 𝑑𝑚𝑎𝑥 . Let 𝑣𝑚𝑎𝑥 be the maximum speed that the drone is capable of traveling and 𝑑𝑣𝑚 be the distance that the

drone can travel when moving at 𝑣𝑚𝑎𝑥 . As shown in Figure 2b, if 𝑣𝑜𝑝𝑡 < 𝑣𝑚𝑎𝑥 then 𝑑𝑚𝑎𝑥 > 𝑑𝑣𝑚 .

Inspired by this finding, we formulate a function 𝑣 (𝑑) that takes a distance and gives us the maximum speed that a

drone can travel to achieve this distance.

𝑣 (𝑑) =


𝑣𝑚𝑎𝑥 if 𝑑 ≤ 𝑑𝑣𝑚
D−1 (𝑑) if 𝑑𝑣𝑚 < 𝑑 ≤ 𝑑𝑚𝑎𝑥
𝑖𝑛𝑓 𝑒𝑎𝑠𝑖𝑏𝑙𝑒 if 𝑑 > 𝑑𝑚𝑎𝑥

(10)

where D−1 (𝑑) is the inverse of Eq. (8). Note that in the third case (i.e., if 𝑑 > 𝑑𝑚𝑎𝑥 ) the drone is not capable of actually

traveling distance 𝑑 . This is the adaptive speed we use in our approaches.

If given realistic parameters for a drone, we could determine D(𝑣). However, D−1 (𝑑) is not easy to work with.

Therefore, we instead propose approximating Eq. (8) between 𝑑𝑣𝑚 and 𝑑𝑚𝑎𝑥 as a second order polynomial then finding

the inverse of this polynomial to approximate Eq. (10). The inverse of such a polynomial will have the form

𝑣 (𝑑) =
√
𝑐1 + 𝑐2𝑑
𝑐3

+ 𝑐4 (11)

where 𝑐1, 𝑐2, 𝑐3 and 𝑐4 will be constants.

In the MT-OTM Problem, we want the drone to visit every waypoint and return to the GV in minimal time. To

minimize time, we would like to minimize the distance that the drone must travel while maximizing the speed that the

drone travels at. However, if moving faster means that the drone runs out of battery before visiting every waypoint

then we may waste time swapping batteries. This creates a tradeoff between maximizing the speed of the drone and

maximizing the distance that the drone can travel - potentially avoiding the need to swap out batteries as often. Drone

path finding algorithms must be cognizant of this tradeoff and seek to exploit it when battery swaps or charging is

required to complete the considered task. In the following section we show how to minimize the distance that the

drone must travel and discuss our strategy for creating an energy-aware path planner that exploits the tradeoff between

maximizing travel distance and maximizing speed.
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5 Our Solution Framework

In this section, we summarize our framework for finding a solution to the MT-OTM problem. Our framework follows

the same strategy that we used in Theorem 2 where we fixed the number of sub-tours (𝑚) then solve the fixed-MT-OTM

Problem.

Algorithm 1 depicts the process described in Theorem 2 to determine𝑚𝑜 , the optimal number of sub-tours, and

a corresponding 𝛷𝑜𝑚 , an optimal drone path, for the MT-OTM problem. We first set𝑚 = 1 (lines 1 and 3), solve for

𝛷𝑚 using the function path-planning() (line 4), then increment𝑚 until𝑚 = |𝑃 | (lines 3 and 8, respectively). On each

iteration we check to see if we found a better solution (line 5) and update𝑚𝑜 and𝛷𝑜𝑚 (line 6), as needed. Note that the

path-planning() function may fail to find a valid solution, particularly when there are a large number of waypoints to

visit and𝑚 is small. In these scenarios, the condition on line 5 is false and the algorithm continues.

The runtime of Algorithm 1 greatly depends on the runtime of the path-planning() function. Assume that the

path-planning() function runs in O(𝜓 ). The loop that starts at line 2 will run |𝑃 | = 𝑛 times, making the runtime of

Algorithm 1 O(𝑛𝜓 ). In practice, we can reduce the number of times we call the path-planning() function by terminating

the algorithm when we stop seeing an improvement after incrementing𝑚. However, this modification will not improve

the worst-case run-time and provides no guarantee of optimality.

If we can write a function path-planning() that finds an optimal solution to the fixed-MT-OTM Problem, then

Algorithm 1 will find an optimal solution and is an exact algorithm for the MT-OTM problem. In Section 6, we simplify

the fixed-MT-OTM Problem by assuming that the first sub-tour starts at the beginning of the considered time horizon

and that every consecutive sub-tour begins as early as possible. This assumption allows us to design both a MINLP

and a heuristics-based solution for the path-planning() function. By building on the algorithms presented in Section 6,

we remove our simplifying assumption on sub-tour start times in Section 7 and formulate an exact solution to the

fixed-MT-OTM Problem and propose a flexible heuristics-based solution.

6 Fixed-Start MT-OTM Solutions

To solve the MT-OTM problem, Algorithm 1 breaks the problem into repeated instances of the fixed-MT-OTM problem

which are solved using a suitable implementation of the function path-planning(). In this section we propose a method

for implementing path-planning() that assumes the first drone sub-tour begins at the beginning of the considered time

horizon and that all consecutive sub-tours will start as early as possible. That is, we assume 𝜏𝑑
1
= 0 and 𝜏𝑑

𝑘+1 = 𝜏
𝑡
𝑘
+ 𝑡𝑏

for𝑚 ≥ 𝑘 ≥ 1, where 𝜏𝑑
𝑘
and 𝜏𝑡

𝑘
are the start and end times of the 𝑘th sub-tour, respectively. We term this the fixed-start

Algorithm 1 MT-OTM Solver

Input: 𝑃 : set of waypoints to visit, 𝑝𝑏 (𝑡) : GV position function

Output: 𝑚𝑜 : optimal number of sub-tours,𝛷𝑜𝑚 : optimal complete drone tour

1: 𝑚𝑜 ← 0, 𝛷𝑜𝑚 ← ∅, 𝑚 ← 0

2: Do:
3: 𝑚 ←𝑚 + 1
4: 𝛷𝑚 ← path-planning(𝑃, 𝑝𝑏 (𝑡),𝑚)
5: if 𝛷𝑚 .𝜏𝑡𝑚 < 𝛷𝑜𝑚 .𝜏

𝑡
𝑚 then

6: 𝛷𝑜𝑚 ← 𝛷𝑚 ,𝑚𝑜 ←𝑚

7: end if
8: While𝑚 <

��𝑃 ��
9: return 𝑚𝑜 ,𝛷𝑜𝑚
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Fix number of 
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Speed-Scheduling
(k-IP)

Speed-Scheduling
(f-MINLP)

Fig. 3. A flow graph for solving the MT-OTM Problem using the fixed-start assumption. We initially fix the number of sub-tours, then
iteratively predict sub-tour times and find fixed-Hamiltonian paths until the solution is consistent in the path-planning() function. We
then increase the number of sub-tours and rerun the path-planning() function.

assumption. The motivation for using the fixed-start assumption is that it simplifies the path-planning() function and

can outperform generalized approaches that remove the assumption (as shown in Section 8).

Figure 3 shows the flow of our proposed path-planning function based on the fixed-start assumption while Algorithm 2

provides more details on our implementation. We start by guessing at the total time, 𝑡 , that it will take to visit the

waypoints in 𝑃 based on 𝑝𝑏 (𝑡) and 𝑚. Vector 𝐴 represents the time required for each of the 𝑚 sub-tours. In the

while loop, we set our guess for the total time and sub-tour times to 𝑡 ′ and 𝐴′, respectively. We then form the graph

𝐺 ′𝑚 using 𝑃 , 𝑝𝑏 (𝑡),𝑚, and 𝐴 in function form-graph(), which determines the locations of all 𝑝𝑑
𝑘
and 𝑝𝑡

𝑘
(the depots

and terminals of each sub-tour) using 𝐴. This graph can be described mathematically as 𝐺 ′𝑚 = (𝑉𝑚, 𝐸𝑚), where
𝑉𝑚 = 𝑃 ∪ {𝑝𝑑

1
, · · · , 𝑝𝑑𝑚} ∪ {𝑝𝑡1, · · · , 𝑝

𝑡
𝑚} and

𝐸𝑚 = {(𝑝𝑖 , 𝑝 𝑗 )
��
1 ≤ 𝑖, 𝑗 ≤ 𝑛 and 𝑖 ≠ 𝑗}

∪ {(𝑝𝑑
𝑘
, 𝑝𝑖 )

��
1 ≤ 𝑘 ≤ 𝑚 and 1 ≤ 𝑖 ≤ 𝑛}

∪ {(𝑝𝑖 , 𝑝𝑡𝑘 )
��
1 ≤ 𝑖 ≤ 𝑛 and 1 ≤ 𝑘 ≤ 𝑚}.

Once we find 𝐺 ′𝑚 , the problem becomes solving an underlying Hamiltonian Path problem (function solve-HP()). We

set 𝚫 and 𝑆 as the found set of sub-tours and set of assigned speeds, respectively, then update the value of 𝑡 based on

the actual total mission time to run all sub-tours in 𝚫 given 𝑆 . We update 𝐴 using the function sub-tour-times(), which

updates each sub-tour 𝑘’s entry in 𝐴 based on the time required to travel sub-tour 𝛿𝑘 while moving at speed 𝑠𝑘 .

The loop continues until one of the following conditions is met:

(1) The predicted mission time, 𝑡 , is within some epsilon of the actual time, 𝑡 ′, and every entry of our predicted

vector 𝐴′ is within some epsilon of the actual vector 𝐴, or

(2) Some iteration limit has been met.

We then return the last found graph 𝐺 ′ and the corresponding set of sub-tours 𝚫. If an iteration time-out condition

occurs, we propose updating 𝐺 ′ based on 𝑡 and 𝐴 without changing the found set of tours 𝚫.

To make an initial guess for 𝑡 , we find the minimum spanning forest of𝑚 trees on 𝑃 ∪ {𝑝𝑑
1
}, determine the minimum

time that a UAV needs to fly the total distance of the forest while making𝑚 − 1 stops to swap batteries. We can use this

time to predict where the base station will be located for each of the𝑚 − 1 stops. Using this intermediate guess, we can

create a𝐺 ′𝑚 , find a new minimum forest of𝑚 trees in𝐺 ′𝑚 then use the distance of this new forest to get a guess on the

time required to complete the search.
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Algorithm 2 path-planning

Input: 𝑃 : set of waypoints to visit, 𝑝𝑏 (𝑡) : GV position function,𝑚 : number of sub-tours

Output: 𝛷𝑚 : complete drone tour with𝑚 sub-tours

1: 𝑡 ← guess-time(𝑃, 𝑝𝑏 (𝑡),𝑚)
2: 𝐴← { 𝑡𝑚 , · · · ,

𝑡
𝑚 }

3: Do:
4: 𝑡 ′ ← 𝑡 , 𝐴′ ← 𝐴

5: 𝐺 ′𝑚 ← form-graph(𝑃, 𝑝𝑏 (𝑡),𝑚,𝐴′)
6: 𝚫, 𝑆 ← solve-HP(𝐺 ′𝑚)
7: 𝑡 ← 𝑡 (𝚫, 𝑆)
8: 𝐴← sub-tour-times(𝚫, 𝑆)
9: While

(��𝑡 − 𝑡 ′�� ≥ 𝜖𝑡 or ��𝑚𝑎𝑥𝑖 (𝐴 −𝐴′)�� ≥ 𝜖𝐴)
and iterations < iteration-limit

10: return 𝛷𝑚

Our fixed-start solution framework reduces the MT-OTM problem into an underlying fixed multi-depot, multi-

terminal Hamiltonian paths problem (fixed-MdMtHPP). This is a special case of the more general MdMtHPP, which is

formally defined as: “Given𝑚 salesmen that start from distinct depots,𝑚 terminals and 𝑛 destinations, the problem

is to choose paths for each of the salesmen so that (1) each salesman starts at his respective depot, visits at least one

destination and reaches any one of the terminals not visited by other salesmen, (2) each destination is visited exactly

once, and (3) the cost of the paths is minimum among all possible paths for the salesmen” [6]. fixed-MdMtHPP differs

from the traditional MdMtHPP in that the depots and terminals are fixed. Each tour that starts at some depot (𝑝𝑑
𝑘
) must

end at a specific terminal (the corresponding 𝑝𝑡
𝑘
).

MdMtHPP is NP-Hard ([6]). Fixing the matching between depots and terminals does not make the problem easier to

solve.

Theorem 3. The fixed multi-depot, multi-terminal Hamiltonian path problem (fixed-MdMtHPP) is NP-Hard.

Before beginning the proof for Theorem 3, we would like to remind the reader of the fixed destination multi-salesmen,

multi-depot TSP (MmTSP). In MmTSP, there is a given set of depots with one or more salesmen and a set of destination

vertices that must be visited by exactly one salesman. In fixed-destination MmTSP, each salesman must end their tour

at the vertex they started at, which is known to be NP-Hard.

Proof. We form a reduction from fixed-destination MmTSP to fixed-MdMtHPP as follows. Let𝐺 be the graph for

the fixed-destination MmTSP problem. Form a new graph 𝐺 ′ by taking the set of destination vertices and depots from

𝐺 . If any depot has more than one salesman that starts at it, then form a new depot at this same location and assign

the additional salesman to this depot. For every salesman, create a terminal vertex that lies on top of the salesman’s

starting vertex. Solve the fixed-MdMtHPP that we have just formed. The routes from our solution to fixed-MdMtHPP

will also be a solution to the fixed-destination MmTSP.

This reduction can be performed in linear time in terms of the number of vertices in𝐺 . As we have found a polynomial

time reduction from fixed-destination MmTSP to fixed-MdMtHPP, and we know that fixed-destination MmTSP is

NP-Hard, then fixed-MdMtHPP must also be NP-Hard. □

We present a MINLP that provides an exact solution to the fixed-MdMtHPP in the following subsection. However, as

we have just shown, the fixed-MdMtHPP is NP-Hard and MINLP are not tractable for larger inputs. To address this

limitation of our MINLP solution, we present a heuristics-based solution in Section 6.2.
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6.1 MINLP Formulation for the fixed-MdMtHPP

In this subsection we formulate a MINLP to solve the underlying fixed-MdMtHPP for our drone path finding problem.

We term this approach the fixed-MINLP, or f -MINLP. We also show how a simplified version of the formulation can be

used to solve the general case of the fixed-MdMtHPP.

Our f -MINLP formulation minimizes mission completion time by jointly minimizing the distance of each sub-tour

and maximizing the speed that the drone travels on each sub-tour. Due to the relationship between travel distance and

speed discussed in Section 4, we cannot simply use a fixed drone speed but must adapt the speed based on distance,

which is why we optimize these two jointly. We use a variation of the Miller-Tucker-Zemlin formulation [21, 37] for the

capacitated VRP because it provides us with the flexibility to force fixed depots and terminals. Although our fixed-start

assumption prevents us from making guarantees on the optimality of a solution to the MT-OTM problem, our f -MINLP

can find an optimal solution to the underlying fixed-MdMtHPP.

In general, we use capital letters for sets, capital letters with subscripts as decision variables, and lowercase letters as

constants. We refer the reader to Table 2 for a list of symbols used in our formulation. For the set of waypoints 𝑖, 𝑗 ∈ 𝑃
and sub-tour 𝑘 in the set of tours 𝐾 , let 𝐸𝑖 𝑗𝑘 be a binary decision variable that determines if edge (𝑖, 𝑗) is included
in tour 𝑘 . We denote the Euclidean distance between 𝑖 and 𝑗 as 𝑑𝑖 𝑗 . We use binary variables 𝐷𝑑

𝑘𝑖
and 𝐷𝑡

𝑗𝑘
to connect

each depot 𝑘 to some waypoint 𝑖 , and some waypoint 𝑗 to some terminal 𝑘 , respectively. Let 𝐿𝑘 and 𝑆𝑘 be continuous

variables for the total distance that the UAV must fly on sub-tour 𝑘 and the constant speed of the UAV on 𝑘 , respectively.

To prevent cycles within each sub-tour, we use the integer variable𝑈𝑖 to give ordering assignments to each waypoint.

Our f -MINLP formulation of the problem is as follows.

min

∑
𝑘∈𝐾

𝐿𝑘

𝑆𝑘
(12)

subject to:

𝐿𝑘 =
∑
𝑖∈𝑃

∑
𝑗 ∈𝑃

𝑑𝑖 𝑗𝐸𝑖 𝑗𝑘 +
∑
𝑖∈𝑃

𝑑𝑘𝑖𝐷
𝑑
𝑘𝑖
+

∑
𝑗 ∈𝑃

𝑑 𝑗𝑘𝐷
𝑡
𝑗𝑘
, ∀𝑘∈𝐾 (13)

𝑆𝑘 ≤
√
𝑐1 − 𝑐2𝐿𝑘
𝑐3

+ 𝑐4, ∀𝑘∈𝐾 (14)

1 −M(1 − 𝐸𝑖 𝑗𝑘 ) ≤ 𝑈 𝑗 −𝑈𝑖 ≤ 1 +M(1 − 𝐸𝑖 𝑗𝑘 ), ∀𝑖, 𝑗 ∈𝑃 ,∀𝑘∈𝐾 (15)

1 ≤ 𝑈𝑖 −𝑈𝑑𝑘 𝐷
𝑑
𝑘𝑖
≤ 1 +M(1 − 𝐷𝑑

𝑘𝑖
), ∀𝑖∈𝑃∀𝑘∈𝐾 (16)∑

𝑗 ∈𝑃
𝐸 𝑗,𝑖,𝑘 + 𝐷𝑑𝑘𝑖 =

∑
𝑗 ∈𝑃

𝐸𝑖, 𝑗,𝑘 + 𝐷𝑡𝑘𝑖 , ∀𝑖∈𝑃∀𝑘∈𝐾 (17)∑
𝑗 ∈𝑃

∑
𝑘∈𝐾

𝐸 𝑗,𝑖,𝑘 +
∑
𝑘∈𝐾

𝐷𝑑
𝑘𝑖
+

∑
𝑗 ∈𝑃

∑
𝑘∈𝐾

𝐸𝑖, 𝑗,𝑘 +
∑
𝑘∈𝐾

𝐷𝑡
𝑘𝑖

= 2, ∀𝑖∈𝑃 (18)∑
𝑖∈𝑃

𝐷𝑑
𝑘𝑖

= 1, ∀𝑘∈𝐾 (19)∑
𝑖∈𝑃

𝐷𝑡
𝑘𝑖

= 1, ∀𝑘∈𝐾 (20)

𝑆𝑘 ≤ 𝑣𝑚𝑎𝑥 , ∀𝑘∈𝐾 (21)

𝐿𝑘 ≤ 𝑑𝑚𝑎𝑥 , ∀𝑘∈𝐾 (22)
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Table 2. MINLP Formulation Symbols

Symbol Type Description

𝐷𝑑
𝑘𝑖

Binary Variable 1 if waypoint 𝑖 is the first stop on sub-tour 𝑘 , 0 otherwise

𝐷𝑡
𝑗𝑘

Binary Variable 1 if waypoint 𝑗 is the last stop on sub-tour 𝑘 , 0 otherwise

𝐸𝑖 𝑗𝑘 Binary Variable 1 if edge (𝑖, 𝑗) is in sub-tour 𝑘 , 0 otherwise

𝐾 Set Set of sub-tours, where 𝑘 ∈ 𝐾 is a sub-tour

𝐿𝑘 Continuous Variable Total distance of sub-tour 𝑘

𝐿𝑡
𝑗𝑘

Continuous Variable Distance from waypoint 𝑗 to terminal of sub-tour 𝑘

𝐿𝑑
𝑘𝑖

Continuous Variable Distance from depot of sub-tour 𝑘 to waypoint 𝑖

𝑃 Set Set of waypoints to visit, where 𝑖, 𝑗 ∈ 𝑃 are waypoints

𝑆𝑘 Continuous Variable Assigned drone speed for sub-tour 𝑘

𝑇𝑘 Continuous Variable Start (𝑇𝑑
𝑘
) and terminal (𝑇 𝑡

𝑘
) times for sub-tour 𝑘

𝑋𝑘 Continuous Variable 𝑥 coordinate for depot (𝑋𝑑
𝑘
) and terminal (𝑋 𝑡

𝑘
) of sub-tour 𝑘

𝑌𝑘 Continuous Variable 𝑦 coordinate for depot (𝑌𝑑
𝑘
) and terminal (𝑌 𝑡

𝑘
) of sub-tour 𝑘

Our objective function (12) is minimizing the total time required for the UAV to travel all sub-tours. Note that we can

remove possible domain violations in the objective using an additional auxiliary variable, 𝐴𝑘 , to separate 𝐿𝑘 and 𝑆𝑘 as

𝐿𝑘 = 𝐴𝑘𝑆𝑘 then minimizing 𝐴𝑘 . We forego adding additional variables here for brevity. Constraint (13) forces variable

𝐿𝑘 to equal the distance of sub-tour 𝑘 . Constraint (14) adapts a sub-tour speed based on the distance of sub-tour 𝑘 and

is derived from Eq. (11).

Constraint (15) enforces a tight numbering scheme for consecutive waypoints in each sub-tour whereM is some

sufficiently large number which will be further discussed shortly. Constraint (16) forces the waypoint after depot 𝑘 to

be assigned a sequence number of 𝑈𝑑
𝑘
+ 1, where 𝑈𝑑

𝑘
is an implied, fixed sequence number assigned to depot 𝑘 that

remains constant. For each waypoint 𝑖 on sub-tour 𝑘 , we want to assign a sequence number to 𝑈𝑖 that is within a

designated range to force waypoints that are on the same sub-tour to be numbered together. We define the bounds

of this numbering range for sub-tour 𝑘 using implied depot and terminal sequence numbers𝑈𝑑
𝑘
and 𝑈 𝑡

𝑘
, respectively.

If 𝑙𝑚 is the maximum number of waypoints that can be assigned to a sub-tour then we want to have 𝑙𝑚 sequence

numbers available between 𝑈𝑑
𝑘
and 𝑈 𝑡

𝑘
. When given 𝑛 waypoints to visit on𝑚 sub-tours with at least one waypoint

on each sub-tour, by the pigeon hole principle, 𝑙𝑚 = 𝑛 −𝑚 + 1. For the first sub-tour, if we set 𝑈𝑑
1
= 0 then 𝑈 𝑡

1
must

be 𝑙𝑚 + 1. This makes 𝑈𝑑
2
= 𝑙𝑚 + 2. Following this trend, we find that for any sub-tour 𝑘 , 𝑈𝑑

𝑘
= (𝑙𝑚 + 2) (𝑘 − 1) and

𝑈 𝑡
𝑘
= 𝑘 (𝑙𝑚 + 1) + (𝑘 − 1). In constraints (15) and (16) we want a value forM that is large enough to allow for all feasible

sequence number assignments for each𝑈𝑖 . To keep a tight bound on our constraints, we setM = 𝑈 𝑡𝑚 =𝑚𝑙𝑚 + 2𝑚 − 1.
Constraint (17) ensures that the in-degree is equal to the out-degree of each waypoint while constraint (18) forces

each waypoint to have a degree of two. Constraints (19) and (20) force every depot and terminal to be used, respectively.

Finally, constraints (21) and (22) bound the maximum allowable speed of the UAV and maximum allowable distance of

any sub-tour, respectively.

The numbering scheme described above is what allows us to fix the depots with their corresponding terminals. We

are also ensuring that each sub-tour contains at least one waypoint by not defining an edge from depot 𝑘 to terminal 𝑘

in our formulation.

We can modify our f -MINLP formulation to solve the general case of fixed-MdMtHPP by making the objective

function to be
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min

∑
𝑘∈𝐾

𝐿𝑘 (23)

and removing constraints (14), (21) and (22). The general fixed-MdMtHPP formulation avoids the additional complexity

of variable multiplication seen in our f -MINLP formulation but does not adapt UAV speed and is not directly optimizing

mission completion time.

Our f -MINLP formulation provides an exact solution to the fixed-MdMtHPP created by fixing the drone’s launch

and receive locations. However, the fixed-MdMtHPP is an NP-Hard problem and MINLPs in general take a long time to

solve to completion. Therefore, we do not expect our f -MINLP formulation to be able to solve large problem inputs in a

reasonable amount of time. In the following subsection, we address this limitation by introducing a heuristics-based

algorithm that can handle large problem inputs.

6.2 Heuristic Solution for the fixed-MdMtHPP

Mixed-Integer Non-Linear Programs are often very hard to solve, even for commercial solvers on high-performance

computers, so in this subsection we propose a more tractable approach that combines a heuristics-based k-means

clustering algorithm and a TSP solver. The general concept is to partition the waypoints into𝑚 groups then form

sub-tours by solving the TSP. After finding waypoint grouping and ordering each sub-tour, we schedule speeds for the

sub-tour by finding the distance of the sub-tour and using Eq. (10).

To partition the waypoints, we use Lloyd’s algorithm to form𝑚 k-means clusters [29]. We use the centroid of each

𝑝𝑑
𝑘
and 𝑝𝑡

𝑘
pair as the initial cluster centroids. We then limit the number of iterations that the algorithm runs which

prevents the cluster centroids from migrating too far away from their corresponding 𝑝𝑑
𝑘
and 𝑝𝑡

𝑘
pairs. Once we have

put each waypoint into a cluster, we combine the clusters with the corresponding 𝑝𝑑
𝑘
and 𝑝𝑡

𝑘
. We then solve a TSP on

the resulting graph and force the edge connecting 𝑝𝑑
𝑘
and 𝑝𝑡

𝑘
to be part of the solution.

There are several well-studied approaches to solving the TSP. In this work we use both an Integer Program (IP) and

the Lin-Kernighan-Helsgaun (LKH) heuristic [20]. We use the IP formulation found in [45] that uses sub-cycle cuts to

enforce closed tours. To avoid an exponential number of sub-cycle cuts, we treat these as lazy constraints where the

constraint is only added to the solver when a found solution would break the constraint, a feature available in many

commercially available solvers such as Gurobi. To get the LKH solver to force edge connecting 𝑝𝑑
𝑘
and 𝑝𝑡

𝑘
to be part of

the solution we set this edge equal to 0 and multiply all other edges going out of each of these vertices by a constant.

We term the IP version of this solution the k-IP approach and the LKH solution the k-TSP approach. Although neither

the k-IP nor the k-TSP algorithms provide theoretical guarantees on solution quality, we should expect both algorithms

to run faster than solving the f -MINLP formulation.

The f -MINLP formulation and the k-IP and k-TSP algorithms all make the fixed-start assumption, where the drone

is launched at the beginning of the considered time horizon and all subsequent sub-tours start as early as possible. The

results of our numerical simulations in Section 8 show that this assumption is valid when all waypoints are located

close to the GV at the start of the considered time horizon but can cause these algorithms to fail to find a solution when

the waypoints are further away. To address this problem, we next consider more flexible solutions that remove the

fixed-start assumption.
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7 Generalized MT-OTM Solutions

Algorithm 1 can find a solution to the MT-OTM problem if given function path-planning() - which solves instances of

the fixed-MT-OTM problem. In the previous section we discussed how to implement path-planning() by assuming that

the first sub-tour should start at the beginning of the considered time horizon and that every consecutive sub-tour

should start as early as possible (the “fixed-start assumption”). In this section, we remove the fixed-start assumption

and propose more generalized solutions.

We first look at a MINLP that provides an exact solution to the MT-OTM problem then propose a heuristic-based

solution that is more tractable. These approaches solve the fixed-MT-OTM problem directly rather than solving for a

fixed-MdMtHPP as presented in the previous section.

7.1 MINLP Formulation for the MT-OTM Problem

In this subsection we formulate a new MINLP to solve the generalized MT-OTM Problem. Our formulation minimizes

mission completion time (the end time of the final sub-tour, 𝜏𝑡𝑚) by jointly minimizing the distance of each sub-tour and

maximizing the speed that the drone travels on each sub-tour. Additionally, our formulation for the generalized problem

dynamically selects 𝑝𝑑
𝑘
and 𝑝𝑡

𝑘
, the starting and end location of sub-tour 𝑘 . We term this solution dynamic-MINLP, or

D-MINLP.

Our D-MINLP formulation builds on the f -MINLP formulation presented in Section 6.1 with a few additional variables.

Let 𝐿𝑑
𝑘𝑖

be a continuous variable that tracks the distance from the depot of sub-tour 𝑘 to waypoint 𝑖 while continuous

variable 𝐿𝑡
𝑗𝑘

tracks the distance from waypoint 𝑗 to the sub-tour’s terminal. Let 𝑇𝑑
𝑘
and 𝑇 𝑡

𝑘
be continuous variables

for the start and end time of sub-tour 𝑘 , respectively. Continuous variables 𝑋𝑑
𝑘
and 𝑌𝑑

𝑘
are the 𝑥 and 𝑦 coordinates,

respectively, of the depot for sub-tour 𝑘 and variables 𝑋 𝑡
𝑘
and 𝑌 𝑡

𝑘
are the coordinates for the terminal of the sub-tour.

Similarly to the f -MINLP formulation, the D-MINLP formulation uses the 𝑆𝑘 variable and Eq. (10) to schedule speeds as

part of the optimization problem.

Our D-MINLP formulation of the problem is as follows:

min𝑇 𝑡𝑚 (24)

subject to Eq. (13), (14) (15), (16), (17), (18), (19), (20), (21), (22), and:

𝐿𝑑
𝑘𝑖

=

√
(𝑋𝑑
𝑘
− 𝑥𝑖 )2 + (𝑌𝑑𝑘 − 𝑦𝑖 )

2, ∀𝑘∈𝐾∀𝑖∈𝑃 (25)

𝐿𝑡
𝑗𝑘

=

√
(𝑋 𝑡
𝑘
− 𝑥 𝑗 )2 + (𝑌 𝑡𝑘 − 𝑦 𝑗 )

2, ∀𝑗 ∈𝑃∀𝑘∈𝐾 (26)

(𝑋𝑑
𝑘
, 𝑌𝑑
𝑘
) = 𝑝𝑑 (𝑇𝑑𝑘 ), ∀𝑘∈𝐾 (27)

(𝑋 𝑡
𝑘
, 𝑌 𝑡
𝑘
) = 𝑝𝑑 (𝑇 𝑡𝑘 ), ∀𝑘∈𝐾 (28)

𝑇𝑑
1
≥ 0 (29)

𝑇𝑑
𝑘
≥ 𝑇 𝑡

𝑘−1 + 𝑡𝑏 , ∀𝑘∈𝐾,𝑘≥2 (30)

𝑇 𝑡
𝑘
= 𝑇𝑑

𝑘
+ 𝐿𝑘
𝑆𝑘
, ∀𝑘∈𝐾 (31)

Our objective function (24) minimizes mission completion time by minimizing 𝑇 𝑡𝑚 , the end time of the final sub-tour.

Constraint (25) sets variable 𝐿𝑑
𝑘𝑖

based on the distance from depot 𝑘 to waypoint 𝑖 while constraint (26) sets variable 𝐿𝑑
𝑘𝑖
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to be the distance from waypoint 𝑗 to terminal 𝑘 . Constraints (27) and (28) ensure that the location of each depot and

terminal, respectively, is based on 𝑝𝑑 (𝑡), the function for the GV’s trajectory discussed in Section 3. Constraints (29)

and (30) bound the start time of sub-tour 𝑘 based on the considered time window (for the former) and the previous

sub-tour’s end time (for the latter). Constraint (31) sets the sub-tour’s end time.

Our D-MINLP formulation finds an optimal solution to the fixed-MT-OTM Problem and makes Algorithm 1 an exact

algorithm to the larger MT-OTM Problem when used as function path-planning(). However, even on the strongest

commercial solvers, MINLPs are not easy to solve to optimality and we have already shown that the MT-OTM Problem

is NP-Hard in Section 3. In the following section we propose a heuristics-based method for solving the fixed-MT-OTM

Problem that is more tractable than our D-MINLP formulation.

7.2 Heuristic Solutions for the fixed-MT-OTM Problem

Our heuristics-based solution for solving the fixed-MT-OTM Problem builds on the concepts presented in Section 6.2.

We use a clustering algorithm to form𝑚 clusters that serve as our𝑚 sub-tours. We pick start and end locations for each

sub-tour then treat the clusters with start and end locations as a TSP and iteratively solve this TSP and re-selecting start

and end locations until the solution becomes consistent and stops changing from iteration to iteration. We term this

approach the Dynamic-TSP, or D-TSP. This solution requires 𝑝−1
𝑏
(𝑥𝑐 , 𝑦𝑐 ), the inverse of the GV’s trajectory function

that gives you the time that the GV will pass through (𝑥𝑐 , 𝑦𝑐 ), or a method for approximating the inverse of 𝑝𝑏 (𝑡).

Fix number of 
sub-tours

Initial SolutionProblem 
Input

UAV 
Paths

path-planning( )

Speed-Scheduling

Set & Correct
Depots

resolve-TSP

Fig. 4. A flow graph for solving the MT-OTM Problem directly. We initially fix the number of sub-tours, run the path-planning()
function, and then increase the number of sub-tours. The path-planning() function finds an initial solution by clustering together
waypoints then iteratively solves a TSP on each cluster and adjusts depot and terminal locations until the solution is consistent.

Figure 4 shows the general flow for our D-TSP algorithm for directly solving the MT-OTM Problem while Algorithm 3

lists the details of our implementation. Starting on line 1, we use a k-means cluster algorithms to form 𝑚 sets of

waypoints (𝑃𝑚). Using the function create-depots() on line 2, we create𝑚 pairs of depots and terminals (stored in set

𝛤𝑚). For each cluster, the function finds the closest point along the GV’s trajectory to the cluster’s centroid. Suppose

this position is (𝑥𝑐 , 𝑦𝑐 ). The function then queries 𝑝−1
𝑏
(𝑥𝑐 , 𝑦𝑐 ) to determine the time that the GV will be at this location.

Suppose this time is 𝑡𝑐 . The create-depots() function then estimates the time required for a drone to visit all waypoints

in the cluster using a minimum spanning tree and assuming the drone moves at 𝑣𝑚𝑎𝑥 . Suppose this time is 𝑡 ′𝑐 . The
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function then places the depot for the cluster at the location of the GV’s position at 𝑡𝑐 − 𝑡 ′𝑐
2
and the terminal at 𝑡𝑐 + 𝑡

′
𝑐

2
.

The algorithm then treats the pairs of depots and terminals in 𝛤𝑚 and waypoint clusters in 𝑃𝑚 as a set of TSP, which is

solved using the LKH heuristic on line 3.

Algorithm 3 D-TSP

Input: 𝑃 : set of waypoints to visit, 𝑝𝑏 (𝑡) : GV position function,𝑚 : number of sub-tours

Output: 𝛷𝑚 : complete drone tour with𝑚 sub-tours

1: 𝑃𝑚 ← k-means(𝑃,𝑚)
2: 𝛤𝑚 ← create-depots(𝑃𝑚)
3: 𝚫𝑚 ← solve-TSP(𝑃𝑚, 𝛤𝑚), 𝚫′𝑚 ← ∅
4: while 𝚫𝑚 ≠ 𝚫

′
𝑚 do

5: 𝚫
′
𝑚 ← 𝚫𝑚, 𝛤

′
𝑚 ← ∅

6: while 𝛤𝑚 ≠ 𝛤 ′𝑚 do
7: 𝛤 ′𝑚 ← 𝛤𝑚
8: 𝑆𝑚, 𝛤𝑚 ← set-depots(𝚫𝑚)
9: 𝛤𝑚 ← correct-depots(𝛤𝑚)
10: end while
11: 𝚫𝑚 ← solve-TSP(𝑃𝑚, 𝛤𝑚)
12: end while
13: return 𝛷𝑚 ← {𝚫𝑚, 𝑆𝑚, 𝛤𝑚}

On line 8, the function set-depots() sets sub-tour speeds based on the distance of the sub-tour and Eq. (10) then

corrects the position of the depots and terminals so the solution meets problem constraints (4), (5), and (6). This logic

is based on centering the depot and terminal around the mid-point time 𝑡𝑐 that was discussed earlier. This function

also attempts to move the start time of a sub-tour to an earlier time if the distance of the sub-tour is less than 𝑑𝑣𝑚 , the

distance that the drone can travel if moving at 𝑣𝑚𝑎𝑥 . The idea behind moving up the start time of a sub-tour is that if

the tour can start earlier then it can potentially end earlier and reduce the time required to visit all waypoints.

Both the create-depots() and set-depots() functions ignore that a consecutive sub-tour cannot start earlier than the

end time of the previous sub-tour plus the time required to swap out batteries (constraint 3). Function correct-depots()

on line 9 fixes constraint 3 violations by solving the following convex optimization problem:

min

𝑚∑
𝑘=1

(𝑇𝑑
𝑘
− 𝑡𝑑

𝑘
)2 (32)

subject to:

𝑇𝑑
𝑘−1 + 𝑡𝑘 + 𝑡𝑏 ≤ 𝑇

𝑑
𝑘
, 2 ≤ 𝑘 ≤ 𝑚 (33)

where 𝑇𝑑
𝑘
is a continuous variable for the start time and 𝑡𝑑

𝑘
is a constant that represents the desired start time for

sub-tour 𝑘 . Constant 𝑡𝑘 is the time duration of sub-tour 𝑘 and 𝑡𝑏 is the time required to swap out batteries on the drone

at the GV.

After finding a consistent solution that meets constraints (2), (3), (4), (5), and (6), we run the TSP solver again on

line 11 to verify that the sub-tour ordering cannot be improved based on how we moved the depots and terminals. The

while-loop on line 4 runs until the sub-tours stop changing between iterations and the while-loop on line 6 runs until
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the location of the depots and terminals stops changing. In practice, these while-loops should have a time-out criteria

to avoid an infinite loop should the algorithm never converge onto a consistent solution.

Algorithm 3 can be performed in polynomial time. To ensure that the k-means clustering algorithm converges in

a timely manner we can add a time-out condition based on 𝑛 = |𝑃 |. The create-depots() function finds a minimum

spanning tree, which can be done in O(𝑛2𝑙𝑜𝑔(𝑛)). The LKH solver is approximated to run in O(𝑛2.2) [19]. The function
set-depots() can be done in O(𝑛). Convex optimization problems can be solved to optimality in cubic time based on

the number of decision variables [63], which means function correct-depots() can run in O(𝑚3). Suppose we limit both

while-loops to time-out after a constant number of iterations, then the inner loop at line 6 will have a runtime of

O(𝑛) while the outer loop at line 4 will be dominated by the runtime of the LKH solver at O(𝑛2.2). This makes the

run-time of Algorithm 3 dependent on the LKH solver at O(𝑛2.2). If we use Algorithm 3 as function path-planning()

from Algorithm 1, then the runtime complexity of the D-TSP approach will be O(𝑛3.2).
Similar to the k-IP and k-TSP algorithms, the D-TSP algorithm provides no theoretical guarantees on solution quality.

However, we should expect the D-TSP algorithm to compute solutions to the general MT-OTM problem much faster

than solving the D-MINLP formulation.

8 Simulation Evaluation

In this section we discuss our evaluation of our framework for solving the MT-OTM Problem in simulation using

parameters from previous field testing and commercially available hardware. We start this section with a discussion on

our evaluation setup. We then look at our proposed methods for the MT-OTM Problem where the start points of each

sub-tour are fixed and then remove this assumption and evaluate our generalized solutions. We conclude this section

with a review of run times for all considered approaches.

8.1 Simulation Setup

Our simulations were conducted on a machine with an Intel 3.4 GHz 16-Core CPU and 64 GiB of RAM. We use Gurobi

Optimizer version 10.0.3 for our optimization solver. Our solution framework is implemented in C++ and provided as

open-source
1
.

8.1.1 Realistic Energy Model from Field Tests. In Section 4 we presented P(𝑣), a theoretical equation that represents

the power consumed by a drone based on speed 𝑣 . P(𝑣) was verified through field testing in [54]. For their specific

drone, P(𝑣) can be approximated as

P(𝑣) = 0.07𝑣3 + 0.0391𝑣2 − 13.196𝑣 + 390.95 (34)

If we equip the drone with a commercially available LiPo battery rated at 2,200 mAh, 12.6 volt, then we can plug Eq. (34)

into Eq. (8) and get

𝑑 (𝑣) = 99, 792𝑣

0.07𝑣3 + 0.0391𝑣2 − 13.196𝑣 + 390.95
(35)

We can use Eq. (35) to determine 𝑑𝑚𝑎𝑥 , the maximum distance that the drone can travel. By approximating the curve of

Eq. (35) between 𝑑𝑣𝑚 and 𝑑𝑚𝑎𝑥 as a polynomial, we can find an approximation for D−1 between 𝑣𝑜𝑝𝑡 and 𝑣𝑚𝑎𝑥 in the

form of Eq. (8).

1
github.com/pervasive-computing-systems-group/MT-OTM-Solver
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8.1.2 Metrics and Baseline Approaches. In all simulations, our primary metric was the total time required to visit

all waypoints and then return to the GV. This includes the time required to swap out batteries between consecutive

sub-tours, incentivizing each approach to reduce the number of sub-tours required to visit all waypoints. We also

looked at the percentage of inputs where each approach was able to find a solution and the computation time for each

approach.

For approaches that assume a fixed start time we compared against a baseline adapted from the heuristics-based

approach found in [33]. We refer to this approach as tour-splitting, which is further discussed below. When evaluating

our generalized MT-OTM Problem solutions we compared against the approaches that assume a fixed start time and as

well as a dynamic implementation of the tour-splitting algorithm.

The tour-splitting (TS) approach finds a TSP tour on the entire set of waypoints using the LKH heuristic [20] then has

the drone follow this tour until it runs out of energy. We chose this approach because it avoids repeatedly solving for

Hamiltonian paths, allows us to adapt drone speeds to sub-tour distances, and has been proposed for similar problems

in recent literature [3, 4, 33]. Additionally, this approach gives us an example of simplifying the problem into a variation

of the traditional TSP and then using a TSP-based heuristic to solve the problem.

This approach as proposed in [33] finds a cycle while in the MT-OTM Problem we wish for the drone to generally

follow the path of the GV. This requires us to slightly adapt the original approach instead of using it directly. To adapt

this approach, we find a minimum distance Hamiltonian path using the LKH heuristic that starts from the waypoint

closest to the vehicle’s starting point and ends where we predict the GV to be at the end of the entire data-collection

mission, as described in Section 5. We then divide this total path into𝑚 roughly equal segments. For each segment,

we form a sub-tour by determining where the GV will be at for the beginning of the sub-tour based on the previous

sub-tour. We then iteratively approximate the maximum possible drone speed allowed for the sub-tour using Eq. (10)

and determine a corresponding sub-tour terminating location until we settle on a consistent solution. The approach is

plugged into Algorithm 1 as the path-planning() function.

The basic TS approach holds the fixed-start assumption that was discussed in Section 6. To compare against our

dynamic solutions (D-MINLP and D-TSP), we further modify the TS approach to allow it to dynamically set sub-tour

start and end locations. The adaptive TS (a-TS) selects depot positions by finding the closest point along the GV’s

trajectory to the beginning of each tour that does not break problem constraints (2), (3), (4), (5), and (6).

8.2 Comparison of Fixed-Start Approaches

We ran all three fixed-start approaches on randomized graphs with 𝑛 ranging from 5 up to 80 at increments of 5. We

generated 50 graphs at each increment. To keep the results comparable across each input graph, we had the GV move

at a fixed speed of 2.5𝑚/𝑠 along the x-axis.

Figure 5a shows an example output of the f -MINLP approach and Figure 5b shows the output of the k-IP approach

on a randomly generated graph with 25 waypoints and a linear GV trajectory. The f -MINLP approach found a superior

solution with a mission completion time of 307.5 𝑠 while the k-IP approach found a solution with a completion time of

382.4 𝑠 . However, the k-IP only took 0.038 𝑠 to compute this solution while using the f -MINLP formulation took 130.9 𝑠

to compute a solution. This tradeoff is further demonstrated in Section 8.2.

Figure 6a (top) shows how the number of waypoints affects the average mission completion time. The error bars

show the standard deviation for each approach. We stopped the f -MINLP at 𝑛 = 30 due to long computation times,

which are further discussed below. The TS and k-IP approaches were not always able to find a feasible solution and their

failure rates are also documented below. On average, the f -MINLP and the k-IP approaches provide a 23.8% and 14.5%
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(a) Drone paths generated using f -MINLP
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(b) Drone paths generated using k-IP

Fig. 5. Sample drone paths generated using our approaches. The blue circles are the navigational waypoints, the dashed, black line is
the GV’s trajectory, the red lines are the drone’s path where the green diamonds are drone launch points and the orange squares are
drone receiving points.

improvement over the TS approach, respectively. The k-IP’s performance is not as good as the f -MINLP solution but

only averages a 3.8% increase in mission completion time over the f -MINLP approach and provides a nice alternative

to the f -MINLP in larger sized problems. We note that the results in Figure 6a were first presented in our conference

publication [16].

Figure 6a (bottom) shows the ratio of graphs where each approach failed to find a solution. The k-IP approach

failed to find a valid solution for 6.6% of the graphs while the TS approach failed at 4.3% of the graphs. This suggests
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Fig. 6. Simulation results for fixed-start solutions (a) and dynamic solutions (b). The top plot of (a) shows the impact of the number
of waypoints on mission completion time for the f -MINLP, k-IP, and TS approaches. The top plot of (b) shows the impact of the
number of waypoints on mission completion time for the f -MINLP, k-IP, k-TSP, D-TSP, and adaptive TS approaches when compared
against an optimal solution found using the D-MINLP approach. The bottom plots for both (a) and (b) show the ratio of graphs where
each approach failed to find a solution.
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that although k-IP outperforms TS in mission completion time, TS may be able to find more solutions than k-IP. The

f -MINLP approach was able to find a solution of all graphs up to the cut-off point (𝑛 = 30).

8.3 Comparison of Dynamic Approaches

In this section we evaluate our proposed generalized solutions for the MT-OTM Problem that remove the fixed-start

time assumption. We ran each approach on multiple randomized sets of graphs with varying values for 𝑛. In addition to

linear GV trajectories, we also compared our various solutions on instances where the GV moves along a sinusoidal

path. The details for each set of inputs is further described below.

8.3.1 Mission Completion Time Compared to Optimal Solution. For our generalized approaches we first ran the D-

MINLP, f -MINLP, k-IP, k-TSP, D-TSP and adaptive TS on a test set where the GV moved along a linear trajectory at

2.5𝑚/𝑠 . To avoid letting the solver get stuck on hard inputs, we set the D-MINLP solution to time-out at 1,200 𝑠 . The

input set had 𝑛 ranging from 3 up to 20 at increments of 1. We generated 50 graphs at each increment. We stopped at 20

because this is when the D-MINLP began to struggle to find a solution in a reasonable amount of time.

Figure 6b (top) shows the percent increase in mission completion time for each method when compared against the

exact D-MINLP approach. The error bars show the standard deviation. The f -MINLP and k-IP approaches found a

comparable solution to the D-MINLP for all inputs. On average, the k-TSP and D-TSP approaches found a solution that

was within 4.5% and 7.7% of the optimal solution, respectively, while the adaptive TS approach averaged 20.8% increase

in completion time compared to the optimal.

Figure 6b (bottom) shows the ratio of graphs where each approach failed to find a solution. All approaches except for

the D-MINLP were able to find a solution on this data set. We set a timeout of 1,200 𝑠 for the D-MINLP and all failures

were from the solver timing out.

8.3.2 Larger Inputs with Linear Trajectory Gound Vehicle. We then ran the k-TSP, D-TSP and adaptive TS on larger

inputs with a linear GV trajectory. We chose to use the k-TSP approach here instead of the k-IP because we wanted to

compare the D-TSP approach against another polynomial time solution. The GV moved at 1.5𝑚/𝑠 and 𝑛 ranged from 5

	200
	400
	600
	800

	1000
	1200
	1400
	1600

M
iss

io
n	
Co

m
pl
et
io
n	
Ti
m
e	
(s
) TS

k-TSP
D-TSP

	0

	0.2

	0.4

	0.6

	0.8

	1

	10 	20 	30 	40 	50 	60 	70 	80 	90 	100

Fa
ilu
re
	R
at
io

Number	of	Waypoints	(n)

TS
k-TSP
D-TSP

(a) Near-start linear data set

	500

	1000

	1500

	2000

	2500

	3000

M
iss

io
n	
Co

m
pl
et
io
n	
Ti
m
e	
(s
) TS

D-TSP

	0

	0.2

	0.4

	0.6

	0.8

	1

	10 	20 	30 	40 	50 	60 	70 	80 	90 	100

Fa
ilu
re
	R
at
io

Number	of	Waypoints	(n)

TS
k-TSP
D-TSP

(b) Far-start linear data set

Fig. 7. Simulation results for dynamic solutions on inputs with linear GV trajectories. The top plots show the impact of the number
of waypoints on mission completion time. The bottom plots show the ratio of graphs where each approach failed to find a solution.
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up to 100 in increments of 5 with 50 randomly generated plots at each increment. We generated two data sets with the

setup. The first has the waypoints beginning close to the GV’s position at the beginning of the considered time window,

which we refer to as the “near-start” linear data set. The second has the GV start 2 kilometers before the waypoints,

which we refer to as the “far-start” linear data set.

Figure 7 shows the results of these two test scenarios with Figure 7a showing the near-start results and Figure 7b

showing the far-start results. On the near-start linear data set, the k-TSP and D-TSP approaches performed nearly the

same with the former slightly outperforming the latter. When compared against adaptive TS, the k-TSP and D-TSP

approaches improved completion time by an average of 18.3% and 14.8%, respectively. As shown in the bottom of

Figure 7a, the k-TSP approach struggled to find a solution as 𝑛 grew above 70. We note that Figure 7a is only showing

results for inputs where all three algorithms were able to find a solution.

Figure 7b shows the results for the far-start linear data set. The k-TSP approach failed to find any solution on these

inputs because the GV started at a distance from the first waypoints and the fixed-start assumption caused the drone to

launch too early. However, both the D-TSP and adaptive TS approaches were able to solve inputs from this data set

with the former finding a solution to all given inputs. The D-TSP improved completion time by an average of 19.2%

when compared to the adaptive TS.
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(a) Drone path generated using k-TSP
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(b) Drone path generated using D-TSP

Fig. 8. Sample drone paths for a GV moving along a sinusoidal trajectory. The blue circles are the navigational waypoints, the dashed,
black line is the GV’s trajectory (which moves from left to right), the red lines are the drone’s path where the green diamonds are
drone launch points and the orange squares are drone receiving points.
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Fig. 9. Drone path generated using D-TSP for a GV moving along a sinusoidal trajectory. The blue circles are the navigational
waypoints, the dashed black line is the GV’s trajectory (which moves from left to right and begins at position (0, 0)), the red lines are
the drone’s path where the green diamonds are drone launch points and the orange squares are drone receiving points.

8.3.3 Larger Inputs with Sinusoidal Trajectory Gound Vehicle. We next ran the k-TSP, D-TSP and adaptive TS test

data sets where the GV moves along a sinusoidal trajectory. The GV moved in the positive 𝑥 direction at 1𝑚/𝑠 while
the vehicle’s 𝑦-coordinate was defined as 𝑦 (𝑡) = 200𝑠𝑖𝑛( 2𝜋𝑡

400
). We again generated two data sets with this setup; the

near-start sinusoidal data set where the waypoints begin close to the GV’s starting position and the far-start sinusoidal

data set where the GV starts 2 kilometers before the waypoints.

Figure 8a shows an example output of the k-TSP approach and Figure 8b shows an example output of the D-TSP

approach on a graph with 60 waypoints from the near-start sinusoidal data set. The k-TSP approach found a superior

solution with a single sub-tour and mission completion time of 230.5 𝑠 while the D-TSP approach found a solution with

two sub-tours and a 308.9 𝑠 completion time. Figure 9 shows the solution found using the D-TSP approach on graph

with 15 waypoints from the far-start sinusoidal data set. In this example, at the beginning of the time window (𝑡 = 0)
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(a) Near-start sinusoidal data set
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(b) Far-start sinusoidal data set

Fig. 10. Simulation results for dynamic solutions on inputs with sinusoidal GV trajectories. The top plots show the impact of the
number of waypoints on mission completion time. The bottom plots show the ratio of graphs where each approach failed to find a
solution.
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the GV began at position (0, 0). The D-TSP approach found a solution that begins at 𝑡 = 884.2 and ends at 𝑡 = 1042.1

while the k-TSP approach was unable to find any solution.

Figure 10 shows the results of these two test scenarios with Figure 10a showing the near-start results and Figure 10b

showing the far-start results. On the near-start sinusoidal data set, the k-TSP struggled to compete against both the

D-TSP and adaptive TS approaches, with the D-TSP improving mission completion time by an average of 7.8% compared

to k-TSP. The D-TSP also improved mission completion time by an average of 7.0% when compared against the TS

approach. Similar to the larger linear data set, the k-TSP also struggled to find solutions as 𝑛 grew above 80.

On the far-start sinusoidal data set, the k-TSP approach again failed to find a solution for all inputs because of the

assumption that the first sub-tour should start at the beginning of the considered time horizon. Both the D-TSP and

adaptive TS approaches were able to find solutions to all inputs with the D-TSP improving mission completion time by

an average of 33.3% when compared against the adaptive TS approach.

8.4 Impact of Speed-Scheduling

We also evaluated how our approach to adaptive speed affected mission completion time. We compared both the k-IP

and D-TSP approaches using adaptive speed (AS) against using these same algorithms when the drone’s speed is fixed at

𝑣𝑚𝑎𝑥 , 𝑣𝑜𝑝𝑡 , and the speed that minimizes energy consumption (termed best endurance, or 𝑣𝑏𝑒 ). We chose these different

speed settings because they have all been proposed for drone path planning problems in recent literature [38, 41, 55].

Figure 11a shows the results from using the k-IP algorithm on the same input set that was used to generate the

data shown in Figure 6a. In this data set, the GV moves along a linear trajectory and starts close to the waypoints. On

average, the adaptive speed approach improved the mission completion time by 11.9%, 31.9%, and 47.1% compared

against fixing the velocity at 𝑣𝑚𝑎𝑥 , 𝑣𝑜𝑝𝑡 , and 𝑣𝑏𝑒 , respectively. With speed fixed at 𝑣𝑚𝑎𝑥 , 𝑣𝑜𝑝𝑡 , and 𝑣𝑏𝑒 the solver only

found solutions for 69.3%, 52.5%, and 25.9% of the graphs, respectively, while using an adaptive speed approach found a

solution for 93.4% of the inputs. In fact, when fixing speed at 𝑣𝑏𝑒 no graphs were solved with 𝑛 ≥ 35.
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(a) Impact of speed scheduling for k-IP
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(b) Impact of speed scheduling for D-TSP

Fig. 11. Simulation results showing the impact of using adaptive speed in path finding approaches. The top plot of (a) shows the
percent improvement that speed scheduling yields with the k-IP approach when compared to fixing the speed while (b) shows this
impact using the D-TSP approach. The bottom plots for both (a) and (b) show the ratio of graphs where each approach failed to find a
solution.

Manuscript submitted to ACM



26 Jonathan Diller and Qi Han

Figure 11b shows the results of running the D-TSP approach on the far-start linear data set. Adaptive speed had

negligible impact when compared to fixing speed at 𝑣𝑚𝑎𝑥 while when compared to fixing the speed at 𝑣𝑜𝑝𝑡 adaptive

speed only improved mission completion time by an average of 5.7% across all inputs. When compared against 𝑣𝑏𝑒 ,

using adaptive speed improved the results by 25.5%. Using 𝑣𝑏𝑒 again made it hard for our solution framework to find

solutions as the number of waypoints grew but the D-TSP approach was able to find solutions for all inputs when using

speed scheduling and when fixing speed at 𝑣𝑚𝑎𝑥 and 𝑣𝑜𝑝𝑡 .

8.5 Computational Efficiency

Table 3 shows the average and 95% confidence interval on computation time for randomized graph inputs on the various

approaches. The f -MINLP results are from the data set used for Figure 6a and D-MINLP results come from the data

set used for Figure 6b, while the rest are from the near-start linear data set discussed in Section 8.3.2. This data only

includes the results from graphs that each approach was able to find a feasible solution on.

The table shows that the computational time for both the D-MINLP and the f -MINLP increases exponentially with the

number of waypoints, with the f -MINLP able to solve slightly larger inputs. As expected, the a-TS approach averaged

the lowest computation time. Surprisingly, the k-IP approach was the second fastest despite having no guarantee to run

in polynomial time, which we credit to the speed of the Gurobi solver. Out of the solutions that are iteratively running

the LKH solver, the D-TSP approach was slightly faster than the k-TSP. We believe this is because the D-TSP algorithm

converges on a solution faster than the k-TSP does.

Table 3. Average computation time (in seconds) and 95% confidence interval (95% CI) for the D-MINLP (D-MP), f -MINLP (f-MP), k-IP,
k-TSP, D-TSP and adaptive tour-splitting (a-TS) approaches with varying number of waypoints (𝑛).

𝑛 = 5 10 15 20 30 40 50 60 70 80

d-
M
P Avg. 0.24 77.1 79.3 162.9 - - - - - -

95% CI 0.039 59.7 53.0 127.8 - - - - - -

f-
M
P Avg. 0.08 0.73 14.4 135 5139 - - - - -

95% CI 0.01 0.15 7.64 48.34 3215 - - - - -

k-
I
P Avg. 0.02 0.02 0.03 0.05 0.08 0.13 0.19 0.23 0.30 0.37

95% CI 0.002 0.002 0.004 0.006 0.010 0.011 0.017 0.027 0.032 0.033

k-
T
S
P

Avg. 0.02 0.03 0.03 0.04 0.13 0.19 0.40 0.51 0.64 0.73

95% CI 0.003 0.007 0.005 0.009 0.022 0.024 0.049 0.068 0.072 0.097

D
-T
S
P

Avg. 0.06 0.07 0.08 0.09 0.16 0.18 0.29 0.40 0.45 0.54
95% CI 0.005 0.005 0.007 0.008 0.015 0.018 0.026 0.038 0.047 0.045

a-
T
S Avg. 0.003 0.005 0.006 0.008 0.018 0.04 0.05 0.06 0.08 0.12

95% CI 0.0 0.001 0.002 0.002 0.003 0.005 0.004 0.010 0.015 0.022

8.6 Summary of Findings

Our numerical simulations demonstrate various tradeoffs between our different considered approaches. We will first

summarize the performance of the fixed-start algorithms introduced in Section 6 then look at when the fixed-start

assumption should and should not be used. We will then summarize our findings on the generalized algorithms

introduced in Section 7 and remark on the impact of speed scheduling for drone path finding.

Among the fixed-start solutions to the MT-OTM problem, the f -MINLP outperforms the other approaches in solution

quality but at the cost of computation time, taking too long to reasonably solve inputs with 30 or more waypoints. The
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k-IP algorithm out performs the k-TSP and the fixed-start TSP-based baseline approach (TS) in both solution quality

and in computation time. A downside to both the k-IP and k-TSP approaches is that they occasionally fail to find a

solution in scenarios where the fixed-start assumption should otherwise work (a short-fall not as common in the TS

approach). In our evaluation, we observed that the k-IP and k-TSP approaches struggle on inputs with sub-regions with

a high concentration of waypoints while the rest of the graph is sparse. On these graphs, the clustering algorithm forms

a single cluster with too many waypoints while the rest of the clusters are fairly small creating many short sub-tours

with one very long tour that cannot be completed in a single flight. Computation time should also be considered when

deploying the k-IP algorithm. Although our implementation of the k-IP algorithm has a reasonable computation time

(averaging 0.37 seconds for inputs with 80 waypoints), this approach is still solving an instance of the TSP to optimality.

On more limited hardware and with less powerful optimization tools, we expect the k-IP solution to struggle and

recommend the k-TSP algorithm as an alternative.

Our results show that the fixed-start assumption is valid when the waypoints are located near the GV at the beginning

of the considered time horizon. In fact, on smaller inputs where the waypoints were all located close to the GV, the

f -MINLP and k-IP algorithms found comparable solutions to the D-MINLP algorithm (an exact method for the general

MT-OTM problem) and the k-TSP algorithm averaged solutions that were within 4.5% of the optimal. These results show

us that, in scenarios where the waypoints are located close to the GV’s starting position, the fixed-start assumption is

valid and the k-IP and k-TSP algorithms should be preferred. However, the fixed-start assumption begins to fail for

inputs where the waypoints were located much further away from the GV’s starting position. In such scenarios, the

fixed-start algorithms (k-IP and k-TSP) fail to find valid solutions.

Among the algorithms that remove the fixed-start assumption, we found that the D-TSP provides a nice balance

between performance, flexibility, and computation time. The algorithm performed slightly worse than the fixed-start

solutions (k-IP and D-TSP) on smaller inputs where the waypoints were all located close to the GV. However, when it

is not clear when to launch the drone or when the waypoints are spread across a large area, the D-TSP algorithm’s

versatility helps it find valid solutions when the fixed-start assumption fails. The D-MINLP performs well as an exact

algorithm when the number of waypoints is less than 20 but becomes too slow to solve after this point.

Although case dependent, our numerical simulation results also show that speed scheduling can have a major impact

on performance. We found that adapting the drones speed did not perform any different from fixing the speed at the

drone’s max speed (𝑣𝑚𝑎𝑥 ) when the waypoints are located further away from the GV. We believe that this is because

the D-TSP algorithm is able to stretch each sub-tour out when the waypoints are far enough away from the GV’s

starting location, which removes the benefit of speed scheduling. However, on inputs where the waypoints are close to

the GV’s starting location, speed scheduling within the k-IP algorithm not only improved solution quality but also

made it easier for the algorithm to find valid solutions. Among the fixed-speed approaches, fixing the drone’s speed

at 𝑣𝑚𝑎𝑥 was the next best option in this scenario but still struggled to consistently find valid solutions at the same

rate as our variable-speed approach. We also found that moving at the speed that minimizes energy consumption

(𝑣𝑏𝑒 ) performs particularly poor in both near-start and far-start scenarios. We hypothesize that on more structured

path finding problems, such as the VRP where the base station is static and vehicles must swap out batteries, speed

scheduling will improve performance in the same way that it improved the performance of the k-IP approach and

recommend incorporating it into path finding algorithms when planning autonomous behavior for drones.
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9 Problem Scenario Prototypes

In this section we demonstrate various prototype scenarios to demonstrate how the MT-OTM Problem could be applied

in different environments and on physical hardware. We first give an example of the MT-OTM Problem in an urban

environment. We then discuss our field test on a physical drone to show the practicality of our considered problem

scenario.

9.1 Urban Environment Simulation

To demonstrate how our MT-OTM solution framework can be used in real-world scenarios, we apply it to an example

in an urban environment where the drone must visit a set of waypoints in a city while the GV follows a set route on

city streets, i.e., not a straight line as in the previous simulation settings. We selected 20 waypoints for the drone to

visit in the urban environment. We selected these points using Google Earth, then converted the GPS coordinates into

relative distances and generated a graph for our MT-OTM solution framework to solve. The GV follows a series of city

streets, moving at a constant 3
𝑚
𝑠 .

Figure 12 shows the drone path generated using the f -MINLP approach. It took the f -MINLP approach 43.1 seconds

to find this solution. We argue that this demonstrates that for most common scenarios the number of waypoints will be

small enough that the f -MINLP approach can be used to find superior solutions. The solution found using the f -MINLP

has a mission completion time of 355.8 seconds while the k-IP finds a solution with 373.1 seconds.

Fig. 12. Drone path generated using f -MINLP approach for a case study in an urban environment. The red circles are drone waypoints,
the purple circles are drone launch locations, and the orange circles are drone landing points. The yellow line shows the path of the
drone and the blue line shows the path of the GV.
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(a) Drone paths generated using k-IP (b) GPS trace of drone path from deployment

Fig. 13. Field prototype results. Image (a) shows the drone path generated using k-IP approach and image (b) drone’s GPS trace from
our field experiment.

9.2 Field Test

To further validate our solution framework we created a field prototype of the MT-OTM Problem using our own physical

drone testbed [15]. We selected 18 waypoints in an empty field using Google Earth with the GV moving in a straight

line across the field at 2.5
𝑚
𝑠 . For simplicity, we landed the drone manually at the end of each sub-tour and substituted

the GV by walking the path of the vehicle on foot. Because the drones in [15] can travel up to 8 km, we shortened the

max flying distance to 1.7 km and set a max velocity of 11
𝑚
𝑠 to scale down the physical prototype.

Figure 13a shows the drone path found using the k-IP approach. Figure 13b shows the GPS trace of the drone while

following the found paths. The result on the physical prototype demonstrates that our approach works well when the

MT-OTM problem is applied in real world scenarios.

10 Conclusions and Discussion

In this work, we formulated the Minimum-Time while On-The-Move (MT-OTM) Problem and presented several

algorithms that solve this problem. This work builds on our previous conference proceedings [16].

We first looked at how to solve the MT-OTM Problem when assuming that the first drone sub-tour must start at

the beginning of the considered time window and that all consecutive sub-tours must start as early as possible. This

assumption allowed us to simplify the problem into an underlying fixed multi-depot, multi-terminal Hamiltonian paths

problem (fixed-MdMtHPP). We developed two approaches for solving fixed-MdMtHPP, a MINLP (termed f -MINLP) that

optimizes drone speeds and a k-means clustering algorithm paired with a TSP solver (the k-IP and k-TSP approaches).

We then looked at how to solve the MT-OTM Problem with the fixed-start assumption removed. We modified our

f -MINLP formulation so that it selects the start and end location of each sub-tour (the D-MINLP solution), which

provides an admissible algorithm to the MT-OTM Problem. We also provided a dynamic version of our k-TSP approach

(the D-TSP approach) that dynamically sets sub-tour start and end locations and runs in polynomial time.

The main findings from this larger body of work are:

(1) We presented a framework for drone path finding that allows a drone to be launched from a GV moving along a

fixed trajectory.
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(2) Through numerical simulations, we found that the D-MINLP solution can solve smaller problem inputs to

optimality but begins to struggle as the number of waypoints grows.

(3) We showed that our k-IP approach is ideal when the user knows when to start the time horizon but is not as

flexible for more general inputs.

(4) We found that the D-TSP approach at times does not perform as well as the k-IP approach, but is much more

flexible than the k-IP and was able to find a solution to a more diverse range of inputs.

(5) We discovered a tradeoff between maximizing drone speed and maximizing the distance that a drone can travel.

(6) We showed that drone speed adaptation can reduce mission completion time in well-structured problems and

should be considered when planning paths for drones.

We believe that the tradeoff between speed and travel distance, leading to our speed scheduling approach within

our algorithms, should be of particular interest to the research community and argue that our results support this

position. Speed scheduling not only led to better quality solutions, but also allowed our algorithm to find solutions on

inputs where following a fixed-speed approach failed to find a solution. Beyond speed scheduling, we also believe that

our proposed solution framework provides a template for stakeholders to build off of when implementing planning

algorithms for autonomous drones.

One possible application of this research is maritime search and rescue, where drones can be quickly launched

from large ships to search for survivors after a disaster [30]. Another possible application is to further integrate our

problem setup into a smart city environment [51]. The drone and GV could utilize static infrastructure to aide with

communication [56], navigation [7], and battery charging [46]. In a smart city scenario, the drone could be delivering

packages, monitoring traffic conditions, or aiding first responders [23] while the GV performs some other task within

the city but allows the drone to ride hitch [48].

For future work, we plan to expand the MT-OTM problem to include multiple drones and multiple GVs. Variations of

this multi-vehicle extension could include limiting the number of drones that can be at a GV, using the GV to ferry

around drones, and considering repeated patrolling scenarios over long time horizons. We made the assumption that the

drone does not need to stop and hover at each waypoint to collect data in this work (e.g. taking images while passing

through a waypoint). Future work could expand on this application setup by requiring the drone to hover at each

waypoint for some predetermined time period. Other expansions to the current work include addressing communication

delays and online coordination between the drone and the GV, further investigating how to apply our general framework

for package delivery applications, and application-specific integration of the drone and GV into smart cities. Possible

solutions to these open research questions include reinforcement learning and adaptive algorithms for online decision

making.

More work is also needed to further validate this energy profile on a physical testbed and to study the probability

distribution associated with our theoretical model. We believe that a probabilistic model for drone energy could be

used to further improve the performance and accuracy of drone path finding algorithms by combining our speed

scheduling approach with works such as [55] and [4] where they consider the risk of the drone running out of energy

before completing its assigned task. Future work should also investigate if the tradeoff between maximizing speed and

maximizing travel distance exists for other autonomous transportation systems, such as GVs, and determine how speed

scheduling for these vehicle types impacts path finding.
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