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ABSTRACT Communication is a fundamental building block in almost every robotics application, acting
as the thread that holds together teams and connects humans to robots deployed in the field. However,
accurately predicting how well robots will be able to communicate during deployment and incorporating
such information into planning algorithms is particularly challenging. In this article, we present the
Link Quality Communication Map (LQCM) – a method for mapping the potential for two robots to
communicate. Our communication map builds a discretized representation of the environment and uses
Expected Transmission Count (ETX), a link quality metric commonly used for data routing in wireless
networks, to represent the ability of two robots to communicate in the environment. We also present a
method for predicting ETX for pairs of robots. This article lays out the details of building an LQCM,
highlights various properties inherent to these maps, discusses how these maps can be used in a variety
of robotics applications, and reviews the results and lessons learned from our own deployments of
LQCMs in the field. To validate our theoretical results, we generated communication maps for a variety
of environments and used them for various robotics applications including multi-robot environmental
monitoring and determining regions with guaranteed communication quality to a base station. Our results
show an average decrease of 18.2% in data transmission times when compared to the current community
standard for representing communication in robot planning and a decrease of over 90% in extreme cases.
We also ran extensive experiments on ETX datasets from our field experiments to evaluate the accuracy
of our ETX prediction method and evaluated how well the method handles malicious communication
jamming.

INDEX TERMS Communication Mapping, Communication-Aware Planning, Robot Networks, Robot-to-
Robot Communication, Robotics

I. INTRODUCTION
Communication is required for deploying robots into the
world, serving as a fundamental element in almost every
field robotics application. This is particularly the case in
multi-robot and robot-human collaboration scenarios, and
crucial to success for many applications, including search
and rescue, agriculture, mining and resource extraction,
environmental monitoring and surveillance. However, accu-
rately representing the ability for robots to communicate in
planning algorithms is an open challenge in research today.

Traditional approaches for representing communication in
robot planning can be divided into two main approaches: (1)

the disk method where communication is assumed to be pos-
sible when within a predefined range and (2) the signal-to-
noise ratio (SNR) method where algorithms attempt to max-
imize SNR between robots. However, decades of research in
the networking community have found that the disk method
is simultaneously overly conservative in prohibiting long
range line of sight communications and overly optimistic in
allowing short range communications through obstructions
while SNR does not accurately represent the potential to
transmit large volumes of data over a wireless network and
cannot provide insight on multi-hop performance [1]–[3].
Over the last two decades, the networking community has
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developed various link quality metrics that more accurately
capture wireless transmission throughput at the application
level [4], [5], yet the robotics community continues to
rely on limited and inaccurate approaches for incorporating
communication into multi-robot planning algorithms.

Motivated by the shortcomings of methods commonly
used in robotics, we pose the following research question:
What is a communication model for field robotics that
accurately reflects application layer performance and how
do we enable robots to build such a model? The model
should be able to inform us of how many robots are required
and where to position robots to move data from robot to
robot and from robot to humans. The disk method has been
used to fill this need but again is not an accurate method
for representing communication, particularly in cluttered
environments. Furthermore, robots must be able to apply
the model in areas that have not been fully explored. Many
existing works in the community have attempted to do this
by predicting point-to-point signal strength using machine
learning. However, as previously stated, signal alone does
not accurately represent the ability to communicate at the
application level and these existing methods tend to require
large volumes of training data. This paper provides a method
for the robotics community to get on track with where the
networking community has already gone.

To address this research question, we propose the Link
Quality Communication Map (LQCM) - a model for repre-
senting the potential for a team of robots to communicate
- and provide a method for predicting link quality in a
given environment. Our LQCM uses the Expected Transmis-
sion Count (ETX) [6] link quality metric to represent the
potential for robot communication. Expected Transmission
Count provides application level insight on how likely a data
packet is to be delivered to the receiver. Using ETX as the
underlying metric gives LQCMs inherent properties, includ-
ing determining where to position robots and the number
of robots needed to maximize data-throughput in wireless
networks formed by mobile robots. These properties make
LQCMs ideal for multi-robot planning and help overcome
the downfalls of previously proposed methods for repre-
senting communication in robot planning, such as making
over simplifying assumptions about communication or losing
application-level insight. To the best of our knowledge, we
are the first to propose mapping ETX for planning large robot
team deployments.

Our contributions include:

1) the Link Quality Communication Map (LQCM),
a discrete representation of the environment that
depicts the potential for heterogeneous robots to
communicate, which we show can be used to
determine the optimal robot configuration and an
optimal number of robots to deploy to maximize
data-throughput;

2) an aggregated regression model, termed SVRF,
for predicting ETX between any two points in

the environment that can be trained using sparse
datasets (200 to 400 data points) and adapt to
changing radio frequency (RF) environments; and

3) experimental evaluation that validates the utility of
the LQCM in a variety of robotics applications
and that demonstrates the accuracy of our SVRF
regression model.

We review related literature on the topics of robot team
deployments and current approaches to mapping commu-
nication in the following section. Notably, we make the
argument for a new networking metric in robotics in Sec-
tion A where we demonstrate the shortcomings of existing
models. In Section III we provide relevant background on
link quality in wireless networks. In Section IV we introduce
the concept of an LQCM, and in Section B we describe our
ETX prediction method. In Section V we discuss various
properties of an LQCM and how they can be utilized in
a variety of robotics applications. Section VI summarizes
our field experiments and results with concluding remarks
in Section VII.

II. Related Work
In this section we summarize related work on
communication-aware robot team deployment, the ETX link
quality metric, and mapping communication.

A. Communication-Aware Robot Team Deployment
Most works on planning communication-aware robot team
deployments utilize communication models that can be
divided into two main approaches. The first approach is
commonly referred to as the disk method. This is an all-or-
nothing approach to communication, where whenever two
robots are within a predefined radius they have maximum
bandwidth but are unable to communicate whenever outside
of this circle. This method has been widely adopted in robot
planning research [7]–[12].

The disk method relies on distance as the criteria for
determining the ability to communicate. However, it is well
known that data-throughput over a wireless link can vary
greatly based on many factors beyond distance, including ob-
structing objects and the materials they are made from, multi-
path signals (both as a means for communication and as
a source of interference), environmental noise, interference
from other devices, and even the time of day [13], [14]. It has
been well documented how these complex factors invalidate
the disk method approach for representing communication
between two wireless devices [3] and are not useful for
planning communication between multiple devices [2], [15].

The second approach is the signal-to-noise ratio (SNR)
method. The concept behind the SNR method is to either
maximize SNR between devices [16], [17] or to set a
bound on an acceptable SNR value for communicating [18].
There are several examples where SNR and its close relative
Received Signal Strength (RSS) are used as a network metric
for maintaining peer-to-peer communication between collab-
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orating robots [19], [20] or for data streaming applications
via multi-robot teams [17], [21], [22]. These metrics have
also been found to work well for certain robotics applications
not specific to data transfer, such as localization [23], [24],
because their behavior can be position-specific when one of
the transmitters remains static.

However, SNR fails to give us application-layer insight on
how well wireless devices will be able to transmit data [1],
[3]. To demonstrate this, we will review the results from
our own previous work where maximizing SNR improved
the packet delivery rate, but paradoxically failed to improve
video streaming quality.

In [17], we deployed two robots in a network of hallways
and placed a WiFi jamming device between the two robots.
We fit the site-specific basic transmission loss model recom-
mended by the International Telecommunication Union [25]
with experimentally collected data and used Gaussian Pro-
cess Regression for mapping noise from the WiFi jammer
to predict the SNR between a relay robot and the two static
robots. Using our SNR prediction method, we deployed the
relay robot by maximizing the minimum SNR between any
two robots and created a three-robot-long relay chain. We
then measured two metrics for moving data from one end
of the chain to the other: (1) the Packet-Loss-Ratio (PLR)
and (2) Netflix’s VMAF score for streamed video [26],
which assigns a numerical value to video based on expected
user experience. A smaller PLR is better while a larger
VMAF score is better. Table 1 summarizes our results from
using SNR as a networking metric in two different indoor
environments, comparing against an agnostic approach that
only attempted to maximize signal strength while ignoring
noise from a signal jammer. We conducted five trials for each
approach in each environment.

Environment 1 Environment 2
Baseline SNR Baseline SNR

PLR 42.2% 0.1% 59.9% 26.9%
Std. dev. 0.528 0.002 0.292 0.302

VMAF 8.014 8.660 0 9.720
Std. dev. 1.651 2.787 0 4.124

TABLE 1: Average packet loss ratio (PLR) and VMAF
scores from using SNR as a networking metric, compared
to an agnostic baseline method, as presented in [17].

Although utilizing SNR outperformed the agnostic ap-
proach, we still found a concerning trend in our data.
Observe that in Environment 1, the VMAF scores are nearly
identical yet the PLR for the agnostic method is significantly
worse than the SNR method. In fact, the PLR is almost
zero when maximizing the minimum SNR between any two
robots in the chain, suggesting that our method for predicting
SNR performed well, but this has marginal impact on data
streaming. Furthermore, the SNR method found a worse PLR
in Environment 2 compared to the near zero PLR found in

Environment 1, but the resulting VMAF score was better in
Environment 2 than it was in Environment 1. This is because
SNR – and other metrics such as PLR – do not give us
application-level insight on data transmission performance
among multiple robots.

The networking community has since derived a variety
of link quality metrics that better represent transmission
throughput in wireless networks at the application level [4],
[5] but the robotics community continues to use these dated
and limited traditional approaches for handling communica-
tion in planning. Instead of using the agnostic disk method
or an SNR approach with limited insights, we propose using
the networking metric known as ETX [6] to represent the
potential to communicate in multi-robot systems. The details
of this metric are further discussed in Section III.

B. Predicting & Mapping Communication for Robotics
To utilize ETX in robot planning, we need a method for
creating a map of ETX. Although we are focused on mapping
communication, we also consider predicting communication
in this section because both problems involve relatively
similar communication prediction methods with the former
storing the predictions in some type of data structure. We
will use the two terms interchangeably here.

There are several works that address the mapping of static
networks [27]–[29]. On a related topic, there also is extensive
work on estimating wireless link-quality in wireless networks
[30]–[32]. Both bodies of work are mainly focused on
improving packet routing between static nodes and do not
consider how to create a map of the potential to communicate
for mobile wireless nodes (robots).

Among works that focus on mapping communication for
robots, almost all existing research has focused on predicting
and mapping RSS or SNR, though works that state SNR tend
to predict RSS and assume RF noise is constant. We would
like to note that some of the following works state that they
are dealing with Received Signal Strength Indicator (RSSI)
– an arbitrary and vendor specific non-negative integer to
describe RSS for varying purposes on network interface
controllers [33]. For clarity, RSSI is not the same as RSS
and works that claim to be measuring RSSI present negative,
real values in dBm (i.e. RSS measurements and not RSSI).
To the best of our knowledge, no existing work predicts or
maps RSSI and those that claim to do so are in fact dealing
with RSS.

Works predicting and mapping RSS can be divided into
two parts: (1) predicting signal strength for robot-to-fixed in-
frastructure communication and (2) predicting signal strength
for robot-to-robot communication. Examples of predicting
signal strength for robot-to-fixed infrastructure include [34],
[35] where they use a distance-based method or [36], [37]
where they use ray-tracing techniques in addition to distance
to further refine predictions. These methods usually rely on
propagation-loss models [25] and experimentally determine
model parameters. Machine learning has been proposed as
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an alternative to using propagation-loss models, as seen
in [17], [38], [39] where they use Gaussian Process (GP)
regression or in [40], [41] where they train Convolutional
Neural Networks. The authors in [42], [43] propose an
online approach to predicting signal strength that uses fil-
tering, though is limited to predicting signal along a robot’s
trajectory and cannot predict signal in areas further away.
Applications involving robot-to-fixed infrastructure include
robot localization [39], path planning for data collection [12],
[37], supporting disaster response operations and exploration
[34], [35], or evading malicious communication jamming
[17].

Predicting and mapping robot-to-robot communication has
also been well studied with a sizeable body of literature.
The authors in [44], [45] use a distance-based model that
includes obstructions while in [46] they break the environ-
ment up into regions and propose directly measuring region-
to-region RSS. However, the most common approach for
predicting robot-to-robot communication is to use learning-
based methods, namely GP. The most common way to use
a GP for robot-to-robot communication is to use pair-wise
robot position (i.e. R4 in two-dimensional space and R6 for
three-dimensional space) as the input to the model [47]–[50].
Although these methods have been shown to work well for
predicting RSS in simplistic environments, we argue that
using position alone will perform poorly in more complex
environments with changing RF noise and showcases where
this approach fails in our field experiments. The authors
in [51] proposed using the ratio of occupied versus free cells
in an occupancy grid as their model input in addition to
position. In [20], the authors propose incorporating a path-
loss model (such as those proposed in [25]) into the mean
function prior of the GP. Breaking from GP, the authors
in [52] propose using a three layer Neural Network (NN)
for predicting signal strength in underground environments.
Although GP and NN are powerful learning tools, we should
expect them to require more data to train on as the number of
inputs increase, making them challenging to use when given
limited data samples. Furthermore, none of these methods
address heterogenous radio types. If each robot has a unique
radio, then how well two robots will be able to communicate
will not only depend on the location of each robot but also
the radio type of each robot. To address these shortcomings,
we present a regression model for predicting ETX that
considers additional model inputs beyond distance and we
show empirically that our model can be trained using smaller
datasets.

As previously discussed, signal is not a good indicator of
application-level performance. To the best of our knowledge,
data transfer rate is the only other metric that has been
mapped for robot-to-robot communication. The authors in
[53] propose using the Minstrel algorithm – a rate control
algorithm for mac80211 in the Linux kernel [54] – to
predict the data transfer rate between a mobile robot and
a static wireless device from direct measurements. However,

this work does not address robot-to-robot communication,
it requires taking point-to-point measurements for all region
pairs, and it is not clear how data transfer rate alone can
be used to plan multi-hop communication over large robot
teams.

Among works that store communication information (i.e.
construct a communication map) and use it for robot-
centric planning problems, the most common method for
representing this information is as a graph. The authors
in [7], [48], [49] form a graph where physical locations
are represented as vertices and non-directional edges are
added to the graph when they predict that two robots will
be able to communicate when positioned at the location
pair represented by the vertices. In [45], they form a fully
connected graph with edge weights based on predicted RSS.
However, these works assume that communication quality
is bidirectional. That is, they assume the rate that robot a
at position zi can send data to robot b at position zj is
equal to the rate that robot b can send data back to robot
a. This assumption does not always hold true, especially
when one of the robots is in an area with excessive RF
noise. In this work, we propose a communication map in the
form of a directed graph with multiple layers, where robot-
to-robot communication is not assumed to be bidirectional
and different robot radio types are represented through new
layers to the graph.

III. Background on Cumulative Link Quality Metrics
A cumulative link quality metric is a metric common in
wireless networks where a numerical value is assigned to
point-to-point links to describe the cost of transmitting
data over that link. For multi-hop routes through wireless
networks, the cost of the route is the sum of costs of all links
in the route [5]. A cumulative link quality metric termed
ETX was proposed in [6] and shown to outperform the
traditional hop-count approach for data packet routing. ETX
is a real number from 1 to ∞ and is defined as the expected
number of transmissions required to send a data packet over
a network link. Mathematically,

ETX =
1

pfpr
(1)

where pf is the probability that the data packet is delivered
to the receiving node and pr is the probability that an
acknowledgement packet is returned to the sending node.
In multi-hop wireless networks, the ETX of a data packet
route is the sum of ETX for each link in the route.

Expected Transmission Count is commonly used in multi-
hop routing [4] and many variations of ETX have been
proposed for specific wireless protocols [5]. We use ETX as
our metric for this study because it is one of the fundamental
building blocks for most other proposed cumulative link
quality metrics and we argue that these more advanced
methods can be substituted into our LQCM formulation and
used in the same manner as presented here.
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Furthermore, we chose ETX as our metric for mapping
robot communication because it allows us to make theoreti-
cal assertions on networking performance. From [6] we get:

Assumption 1. The highest data-throughput route through
a wireless network is the route with the smallest ETX.

Many experimental works have shown that this assumption
holds true in most cases [6], [55], [56]. If we can predict ETX
between arbitrary points in the environment, then Assump-
tion 1 implies that we can determine robot configurations
that optimize network performance. Neither RSS nor SNR
can provide a guarantee on performance and it is not clear
how such metrics could be used to determine an optimal
multi-hop data-throughput route in wireless networks.

Although we focus on IEEE 802.11 (WiFi) in this article,
ETX can be utilized to characterize peer-to-peer commu-
nication for other RF protocols, such as LoRaWAN (Long
Range Wide Area Network) [57], [58] – a communication
protocol that operates in the 863-928 MHz range [59].
Beyond RF, ETX has been proposed and investigated in
underwater acoustic communication networks [60], [61] and
in optical communication [62]. Although not investigated in
this work, our proposed LQCM should also be applicable for
robot-to-robot communication when using acoustic or optical
communication technology.

IV. Link Quality Communication Map
In this section we formally define a Link Quality Communi-
cation Map (LQCM) and propose a method for building an
LQCM using aggregated regression models.

A. Link Quality Communication Map
Conceptually, an LQCM is a representation of the poten-
tial for robots to communicate in a given environment. In
practice, an LQCM is a directed, weighted, fully-connected
graph. The vertices of the graph represent physical locations
in the deployment environment and static, wireless infras-
tructure. Edge weights of the graph are the ETX value (either
measured or predicted) between two robots if they were each
located at the respective physical locations represented by
the vertices on either end of the edge. Figure 1 shows a toy-
example of building an LQCM for a simple environment.

Given continuous space X (Fig. 1a), we build an LQCM
by discretizing X into a set of cells Z where each cell
is a unique robot-accessible location in X (as depicted in
Fig. 1b). The granularity of the cells is up to the user and
can be based on the particular use case. Robots with identical
wireless radio equipment (e.g. WiFi cards and antennas) can
be assumed to be homogeneous in the LQCM. However,
robots with different wireless radios will have varying ETX
values between them when compared to a homogeneous
radio configuration. Because of this fact, we add layers to
the LQCM for each unique radio setup. Suppose we are
given a team of robots with K unique radio setups. For each
zi ∈ Z, create K vertices v1i , v

2
i , · · · vKi where each vertex

vji represents a possible location for a robot with radio setup
type j at physical location zi (as depicted in Fig. 1c and 1d).
Additionally, any static, wireless-enabled infrastructure, such
as base stations, will have different ETX values with each
unique robot radio setup. Let S be the set of all wireless
infrastructure where each si ∈ S represents the location in
X where wireless device i is located.

Mathematically, an LQCM is the digraph G = {V, A, q}
defined as:

• V =
⋃K

j=1 V
j ∪ S,

• A = V × V , and
• q(vi, vj) is the ETX weight of arc (vi, vj) ∈ A.

where each V j = {vj1, v
j
2, · · · vjn} is the set of deployment

vertices for robot radio setup j. In Fig. 1d, V 1 is the top set
of blue vertices that represent radio type 1, V 2 is the lower
set of vertices, and S contains the single orange vertex that
represents the base station in the environment (depicted as a
laptop).

For simplicity, we disregard occupied cells and cells that
are inaccessible by a robot in X . We assume that the ETX
between two robots in a pair of cells is the same regardless
of where the robots are positioned within each cell.

Observe that the size of the map depends on the size of
the environment, the granularity of the cells, the number of
robot radio types, and the number of static devices. Suppose
that the number of cells required for a given environment is
φ. For each K unique radio setup, we will add an additional
φ vertices to G while each static device in S will add a single
node to the graph. This means that the number of vertices in
G will be φK + |S|. If the area of each cell remains fixed,
then doubling the size of the environment will double the size
of φ. Alternatively, if we fix φ and allow the granularity (i.e.
the area of each cell) to change, then doubling the size of
the environment will not impact the size of the graph. We
note that the number of robots does not impact the size of
G, only the number of unique robot radio setups (K).

Determining the granularity of the discretization of X de-
pends on both the environment and the application for which
the LQCM will be applied. More feature-dense environments
will likely require a finer cell dimension. For example, an
LQCM for Clearpath Jackal robots operating in a cluttered
office space could consist of cells that are one-half square
meters (roughly the size of a Jackal robot). Alternatively,
large environments and applications where the robots com-
municate over long ranges can relax the size of each cell.
For example, Clearpath warthog robots operating in large,
open fields for an agricultural monitoring application could
use cells with an area of 25 square meters. Furthermore, we
use square cells in this work for convenience, but the cells
could be any cellular decomposition of the environment [63].

We chose to use a discretized representation of the envi-
ronment because it lends itself well for planning the actions
of multi-robot teams. Examples of this are seen in [7],
[48], [49], where communication is represented as a discrete
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FIGURE 1: A simple example of a given environment X (1a), a discretization of X into Z (1b), generating vertices from
cells in Z (1c), and a complete LQCM with a layer of vertices for each unique robot radio setup (1d).

graph to facilitate planning and coordinating robot actions.
However, one possible way to build an LQCM in continuous
space would be to remain in X . Each robot would be
represented as a discrete point in X and we would build
a fully connected graph where each robot and static device
would be vertices in the graph and edge weights would be
defined as the ETX between each robot. A similar setup is
seen in [45]. We further discuss advantages and drawbacks to
a continuous-space representation of an LQCM in Section B.

A limitation to using an LQCM is that it requires an
accurate function q(vi, vj). Directly measuring ETX for all
possible arcs in A would require n(n− 1) measurements at
n(n−1)

2 unique position pairs, where n = |V |. Alternatively,
one could estimate q(vi, vj) by predicting the ETX between
points zi and zj , as discussed below.

B. Predicting ETX Between Robots
To build our LQCM, we need a method for predicting ETX
between any two points in X . In general, our prediction
model extracts features from an occupancy grid and uses
them as inputs for aggregated regression models.

In Section III, ETX is defined mathematically as the
inverse of the product of pf and pr. Observe that ETX
is a rational function that grows to ∞ as pf and pr de-
crease. Rather than predicting ETX, we propose predicting
pd = pfpr, the probability that the data packet is received
and acknowledged, which is defined in the range [0, 1].

To predict pd, we extract various features from occupancy
grids to use as inputs to a regression model. Given two cells
zi and zj in Z, let dij be the straight line distance between
zi and zj . In most environments, the straight line between
two random points will be obstructed by obstacles. Let oij
be the number of occupied cells and uij be the number of
unknown cells in an occupancy grid between zi and zj .
By unknown cells, we mean cells that are neither known
to be occupied nor known to be empty (often represented
as ‘-1’ in the grid). Both oij and uij can be found using
Bresenham’s line algorithm [64]. Let Ni and Nj be the RF
noise at positions zi and zj , which can be measured directly

or predicted using methods such as the one seen in [17],
where Gaussian Process Regression is used to create a map
of noise. Note that interference and RF chatter from other
devices is included in both Ni and Nj . Let Gi be the radio
gain of the robot type that we plan to deploy at zi.

In many cases the obstacles between zi and zj will prevent
RF signals from traveling directly from zi to zj . In such
cases, if there still exists a connection between two robots
located at zi and zj it is because the RF signal is following
a multi-path route that goes around the obstacles between zi
and zj . Let drij be the distance of the freespace path between
zi and zj found using A∗ search from point zi to zj in the
occupancy grid. To determine the likelihood that drij is more
representative to the distance that a signal must travel from
sender to receiver, we also consider the ratio between the
straight-line and the freespace path distance, δij =

dr
ij

dij
. The

closer δij gets to 1, the more likely it is that the two robots
have line-of-sight with one another. Conversely, a larger
value for δij suggests that there is a large object between
the two robots.

We define our prediction model’s training
set as {(x1,y1) · · · (xn,yn)}, where xl =
[dij , oij , uij ,Gi,Gj , Ni, Nj , d

r
ij , δij ]

T is an input to our
model and yi = pd is the desired model output.

We form our prediction model by combining a Support
Vector Regression (SVR) model [65] and a Random For-
est Regression model [66]. We use a Radial Basis kernel
function [67] for the SVR. We run each model separately
then average together the output of each model to get a
final prediction. We chose a Random Forest because parts
of our problem appear to be discrete decisions (e.g. does
oij = 0?). However, we found that the Random Forest was
prone to over fitting our data so we selected an SVR to help
generalize our model.

We term this the Aggregated SVR+Random Forest
(SVRF) model. Given a prior dataset, we can train our
SVRF model to make pd predictions for location pairs that
we have not previously taken ETX measurements in. These
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predictions allow us to fill in weight values q(vi, vj) for the
LQCM digraph G.

V. Applying Link Quality Communication Maps
In this section we look at various properties of LQCM and
discuss how to find paths in the maps. We then summarize
how LQCMs can be applied in various robotics applications.

A. Properties of Link Quality Communication Maps
In wireless networks, the ETX of a data packet route is
the sum of ETX for each link in the route, as discussed
in Section III. In the LQCM graph G, the ETX of a path
through G is the sum of weights of the links in the path.

Suppose we would like to transmit data from zi to zj
and need to determine where to place robots to transmit the
data. Let the ordered sequence of vertices Wij be the least
ETX path in G from a vertex representing zi to a vertex
representing zj . Building on Assumption 1, we get:

Proposition 1. The robot configuration (i.e., where to place
each robot) that maximizes data-throughput from a source
device at zi to a sink device at zj is at the vertices in Wij .

Proof:
By contradiction, assume that there exists a robot config-
uration W

′

ij 6= Wij that achieves higher data-throughput
than the vertices in Wij . From Assumption 1, W

′

ij must be
the least ETX path from zi to zj , but this contradicts the
definition of Wij . �

Furthermore, we can also determine how many robots are
required to transmit data from zi to zj . We define |Wij |r
as the number of vertices in Wij that represent physical
locations. That is, |Wij |r = |Wij∩(

⋃k
j=1 V

j)|. With |Wij |r,
we get:

Proposition 2. The optimal number of robots to deploy to
maximize data-throughput from a source device at zi to a
sink device at zj is l = |Wij |r.

Proof:
By contradiction, assume that the optimal number of robots
to deploy to maximize data-throughput is l

′ 6= l. From
Assumption 1, the least ETX path from zi to zj must therefore
have l

′
vertices. However, this contradicts the definition of

Wij . �

In other words, if we find Wij in G, then the vertices in
Wij will represent the physical locations to position robots,
with specific radio types, to minimize ETX from a source
device at zi to a sink device at zj . Because putting robots at
the locations in Wij will minimize the ETX from the source
device to the sink device, then the cardinality of Wij tells
us the exact number of robots needed to minimize ETX.
Assumption 1 tells us that the highest data-throughput route
through a wireless network is the route with the smallest
ETX. This means that finding a robot configuration that

minimizes ETX from the source device to the sink device
will maximize data-throughput from the source to the sink.
Determining this robot configuration simply requires us to
find Wij in G.

As an example of Propositions 1 and 2, consider the
environment shown in Figure 1. We have two robots, a and b,
where robot a has radio type 1 and robot b has radio type 2,
and we want to send a robot to z2 to stream data back to the
base station. Suppose that the least cost path from the orange
node to a vertex representing z2 in the graph in Fig. 1d is
Wij = {s1, v21 , v12}. This tells us that we should place robot
b (with radio type 2) at z1 and robot a (with radio type
1) at z2 to maximize data-throughput from z2 back to the
base station. Propositions 1 and 2 can be restated to include
wireless infrastructure in S by finding Wij′ from a vertex
representing zi to infrastructure vertex sj′ , or in reverse by
finding Wj′ i.

Note that the optimal number of robots to transmit data
from zi to zj is not the same as the minimum number
of robots to transmit data from zi to zj . As shown in
our field experiments in Section VI, using more robots can
sometimes improve data transmission performance compared
to using fewer robots. Furthermore, communication quality
can change based on a variety of factors, as discussed
in Section A, including the time of day. This means that
Propositions 1 and 2 depend on an accurate prediction of
ETX.

Propositions 1 and 2 assume that there are enough robots
of the correct type for Wij . However, in practice we will
not always have enough robots for Wij . Let Rk be the set
of robots with radio setup k and mk = |Rk|. We assume
that Rk ∩ Rk = ∅. Let |Wij |kr be the number of vertices
in Wij that represent robot radio setups of type k. That is,
|Wij |kr = |Wij ∩ V k|. Let W̃ij be the least cost path from a
vertex representing zi to a vertex representing zj in G where
the following constraint holds:

|W̃ij |kr ≤ mk, k ∈ {1, 2, · · ·K}. (2)

Given W̃ij , we get the following corollaries to Propositions 1
and 2:

Corollary 1. Given robot team R1 ∪R2 ∪ · · ·Rk, the robot
configuration that maximizes data-throughput from a source
device at zi to a sink device at zj is at the vertices in W̃ij .

Corollary 2. Given robot team R1∪R2∪· · ·Rk, the optimal
number of robots to deploy to maximize data-throughput
from a source device at zi to a sink device at zj is |W̃ij |r.

The proofs for Corollaries 1 and 2 are identical to the
proofs for Propositions 1 and 2. Note that these corollaries
are generalized to include wireless infrastructure. That is,
W̃ij may include existing wireless infrastructure, along with
multiple robots, as intermediate relay nodes to maximize
data-throughput.
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B. Finding Minimum Cost Paths in an LQCM
Propositions 1 and 2 require us to find minimum cost path
Wij through G with no restrictions on the length of the path
or which nodes are included in the path. This can be done
using Dijkstra’s algorithm.

We acknowledge that the A∗ search algorithm is more
efficient than Dijkstra’s algorithm for least-cost path prob-
lems when there exists an admissible heuristics function
h(vi, vj) (a function that guarantees a lower bound on the
cost from vertex vi to vertex vj). However, it is challenging
to define an admissible h(vi, vj) for G that is meaningful
due to the stochastic nature of wireless communication.
Notably, q(vi, vj) will not be an admissible heuristic because
there may exist an alternative path through G from vi to
vj that is less than q(vi, vj). For example, suppose that
there is a large metal object between the cells zi and zj
that are represented by vi and vj , respectively, in G and
q(vi, vj) =∞, but a third cell zi′ has line-of-sight with both
zi and zj and q(vi, vi′ ) + q(vi′ , vj) = 3. Another possible
heuristics function would be to predict ETX between all pairs
of cells in Z based on distance while assuming all cells have
line-of-sight. However, this strategy again does not guarantee
admissibility because ETX with line-of-sight at a given
distance will change depending on the environment. This
is seen in our field experiments in Section VI where there
is a notable difference in ETX between robots and the base
station in an outdoors environment compared to an indoors
environment. At the time of writing, the only guaranteed
lower bound on ETX is a value of 1 (i.e. assuming there
exists a perfect connection between zi and zj).

Corollaries 1 and 2 require us to find W̃ij , a minimum
cost path through G that adheres to the limited number of
robots of each radio type. If K = 1 (i.e. all robots have the
same radio setup) then W̃ij can be found using a variation
of weighted breadth-first-search that limits the depth of the
search to m1 (the total number of robots available). However,
if K > 1 (i.e. we are giving multiple radio types) then
Constraint 2 makes it more challenging to find W̃ij .

Theorem 1. Finding W̃ij in G when K ≥ 2 is at least as
hard as NP-Complete problems.

Before proving Theorem 1, we would like to remind the
reader of the 0-1 knapsack problem: Given a set I of n items,
each with weight wi and value pi, form a subset of items
Is such that

∑
i∈Is wi ≤ W and

∑
i∈Is pi ≥ P , for some

0

0

... ... ...ωi:

vi:

vs vt

 ρ1  ρ2  ρn

pmax
- p1

pmax

pmax - p2

pmax - p2

pmax

pmax

FIGURE 2: Graph Gk constructed from the 0-1 knapsack
problem. Vertices grouped in purple represent a single wid-
get, where green vertices are ωi and blue vertices are vi.

given weight limit W and desired value P . The 0-1 knapsack
problem is known to be NP-Complete [68]. The idea to our
proof is to create a sequence of widgets that represent items
in the 0-1 knapsack problem. We impose a “total cost” for
traversing the widget sequence and give a cost discount for
selecting items (activating widgets – as defined below) but
we limit the number of widgets that can be activated using
W . Figure 2 shows the basic concept of the widget sequence
used in our proof.

Proof:
We reduce the 0-1 knapsack problem into finding W̃ij in a
special graph Gk as follows: For each item i, create a widget
ρi = {ωi, vi}, where ωi is wi sub-vertices in a directed tree
with no branches and edge weights of 0 and vi is a singular
vertex that is not connected to ωi. Form Gk by creating
a start vertex vs, an end vertex vt, and then lining up all
widgets in an ordered row between vs and vt. Add directed
edges from vs to the first ρ1, where the edge weight going
into v1 is pmax and the edge weight going into the root of ω1

is pmax− p1, where pmax = max(p1, p2, . . . , pn). For each
ρi and ρi+1, add directed edges from ωi and vi to both ωi+1

and vi+1 with weights as described for edges going into ρ1.
The last pair ρn is then connected to vt with a weight of 0.
Designate all ωi as robot type 1 and accompanying vertices
vi as robot type 2. With m1 =W and m2 = n, find W̃ij in
Gk. We consider widget i to be “activated” if W̃ij includes
ωi.

The activated widgets in W̃ij represent the items to include
in Is for the 0-1 knapsack problem. If npmax−cost(W̃ij) ≥
P , then there exists a subset (Is) that meets the requirements
of the given 0-1 knapsack problem. If npmax−cost(W̃ij) �
P , then no subset of I exists that meets the requirements
of the given 0-1 knapsack problem because W̃ij will be a
minimum cost path from vs to vt.

We have found a polynomial time reduction from the 0-
1 knapsack problem to finding W̃ij in G when K ≥ 2.
Therefore, finding W̃ij in G when K ≥ 2 is at least as hard
as any NP-Complete problem.

We note that the reduction to the knapsack problem is
helpful to show the hardness of finding W̃ij in G while a
more intuitive approach to finding W̃ij would be to search for
constrained shortest paths (CSP) in G rather than modeling
our problem as an instance of the knapsack problem. Finding
CSPs in a graph is also known to be NP-hard [69], with
well documented exact and approximate solutions [70]. In
practice, we recommend attempting to find Wij in G using
Dijkstra’s algorithm first. That is, attempt to find a robot
configuration without restricting the number of robot radio
types. If the found path breaks constraint (2) (i.e. the path
requires more robots with a certain radio type than what
are available), then an alternative method must be used to
find a CSP in G. In our field experiments in Section VI, we
found that using Dijkstra’s algorithm is usually sufficient for
finding W̃ij .
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Given the complexity of finding W̃ij , it could be advan-
tageous to remove vertices from G that are unlikely to be
used. For any location zi ∈ Z, it is unlikely that more than
one vertex in G that represents zi will be in W̃ij . However,
in the general case, removing vertices will break optimality
guarantees from Corollaries 1 and 2. A possible case where
one could remove cells is when robots with a certain radio
type are not able to access an area of the environment that
other robots with a different radio type are able to access.
The layer that represents the restricted robot class could be
trimmed down based on the accessibility of those robots
without losing optimality guarantees.

In Section A we briefly described one possible representa-
tion of an LQCM in continuous space, where each robot and
static device would form vertices in a fully connected graph.
The advantage to this approach is that we would move away
from the accuracy limitations of discretizing our deployment
space. The disadvantage of using continuous space is that
determining where to deploy robots and how many robots
to deploy to maximize data-throughput (that is, achieving
Corollaries 1 and 2) becomes more complicated. To keep
the guarantees of Corollaries 1 and 2 in continuous space,
we would need to define a function, f(zi, zj) : X ×X → R,
that takes the positions zi, zj ∈ X of robots i and j and
determines the ETX of transmitting from robot i to robot j.
To determine an optimal robot configuration when moving
data from location zi to location zj would require us to
minimize f(zi, z1) + f(z1, z2) + · · · f(zn, zj) by selecting
the location of z1, z2, · · · zn, determining a value for n, and
determining which robot should be placed at each position
z. This is a new combinatorial problem that is further
complicated when considering physical obstacles. The main
advantage of our discretized space representation for the
LQCM is that it simplifies this combinatorial problem and
in most cases finding W̃ij in an LQCM can be done using
Dijkstra’s algorithm, as shown in Section VI.

C. Applications of Link Quality Communication Maps
We argue that LQCMs can be applied to any multi-robot
scenario where the robots rely on wireless communication
between one another and between robots and human op-
erators. In this section we highlight how an LQCM could
be applied to a variety of common multi-robot applications
where high-level planning must account for wireless com-
munication.

The maps can be used to determine how to place robots
for data relaying and streaming applications such as [17],
[71]–[74]. From Propositions 1 and 2, we can determine the
optimal number of robots to deploy and where to place each
robot for streaming applications by finding W̃ij .

The map can also be used to determine regions of the
environment that a team of robots can explore while guar-
anteeing a minimum wireless connection to a base station,
similar to the problems addressed in [18], [53]. Suppose we
have determined that an acceptable connection to the base

station is an ETX of 3. Any cell in Z with a vertex in G
that has a least cost path of 3 or better to the base station is
a cell that can be explored while guaranteeing an acceptable
wireless connection to the base station.

Link Quality Communication Maps can also be used when
planning data muling problems where teams of robots are
used to collect data from sensors, as seen in [7], [10],
[17]. The algorithms discussed in these works could be
further augmented by adding an LQCM and determining
data collection and relaying configurations that reduce the
time required to deliver data back to a base station.

VI. Evaluation in the Field
To evaluate the utility of our LQCM and our proposed ETX
prediction method, we ran field experiments in three outdoor
environments (Mock-Town, Courtyard, and Camp shown in
Fig. 3) and one indoor environment (Office). The Mock-
Town is a robotics experimental arena set up to replicate
an urban environment [75]. The Courtyard is located on
the Colorado School of Mines campus and is an open
space with small concrete barriers situated between academic
buildings. The Camp is a group of camp lodgings in a
heavily wooded area located in West Point, New York. The
Office is a long hallway that connects office spaces and class
rooms and also located on the Colorado School of Mines
campus. In the Mock-Town and Camp we used a team of
three Clearpath Jackal robots and then added a Raspberry
Pi 3 as a base station for the Courtyard and the Office.
Figure 4c shows two of the robots streaming data in the
Courtyard and Fig. 5c depicts two more Jackal robots in the
Camp environment. Each robot was equipped with an USRP
B205mini-i software-defined radio (SDR) that functions as a
spectrum analyzer to measure RF noise. We lowered the gain
of the TX power on the base station to reduce the distance
that a robot needs to travel to break connection with the
base station. The Raspberry Pi 3 had its TX power reduced
to 2 dBm for the Courtyard and 1 dBm for the Office. The
further reduction in the Office was because the Raspberry Pi
was able to communicate noticeably further indoors. At this
setting, the robots would lose communication with the base
station at roughly 40 m in line-of-sight conditions. In the
Camp environment we also deployed another USRP SDR
to broadcast RF noise, similar to the Wi-Fi jammer setup
described in [17]. We used OmniMapper [76] on a single
Jackal robot to create occupancy grids for each environment.

We created two networks for our experiments: a test
network and an administrative network. The test network
consisted of the Jackal on-board Intel WiFi cards provided by
Clearpath and the WiFi peripheral built into the Raspberry Pi.
The test network was used to take ETX measurements and
stream data. The potential to communicate over this network
is what we mapped out in an LQCM for each scenario.
The administrative network consisted of a powerful UniFi
access point, a commercial WiFi router, and an additional
Waveshare WiFi card on each Jackal robot. We used the
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(a) Mock-Town Environment (b) Courtyard Environment (c) Camp Environment

FIGURE 3: Locations of outdoor field experiments.

administrative network to control the robots and coordinate
their actions. The motivation for two separated networks is
to move the robots beyond the limits of their communication
range (introducing communication failure) over the test
network while still allowing us to safely control the robots
on the stronger administrative network.

To measure ETX between two robots, or between a robot
and the Raspberry Pi, we had the sending node transmit
1,000 data packets. The receiving node would then send
1,000 acknowledgement packets back to the transmitter,
regardless of how many packets successfully arrived at the
receiver. We then counted the total number of data and
acknowledgement packets received and used these numbers
to calculate pf and pr, respectively, by dividing the number
of packets received by 1,000. The data packets were each
1,400 bytes large and the acknowledgement packets were 2
bytes. We used User Datagram Protocol (UDP) to transmit
packets for ETX data collection because we wanted to count
the number of packets that successfully transmitted over
connectionless sockets without any handshake dialogue.

In each environment, we used two or three robots to take
point-to-point ETX measurements over the test network and
(when applicable) had each robot measure ETX with the
Raspberry Pi base station. We manually drove the robots
into different locations in each environment, seeking to find
configurations where we got representative samples of both
extremes for each model input discussed in Section B. We
took ∼200 measurements in the Mock-Town, ∼290 in the
Courtyard, ∼400 in the Camp (300 with the Wi-Fi jammer
and 100 without) and ∼260 in the Office.

A. ETX Prediction Accuracy
To evaluate our proposed ETX prediction method, we trained
our proposed Aggregated SVR+Random Forest (SVRF)
model on the ETX measurements collected from all three
environments. As discussed in Section B, we predict pd, the
probability that a data packet is successfully delivered and
acknowledged, as oppose to ETX directly because ETX is
defined on the interval [1,∞) where as pd ∈ [0, 1].

We compare our SVRF model against an adaptation of
the ETX model found in [20], where they suggest that pd

can be derived from a signal prediction. We predict signal
between two robots using a similar method to [17] by
line fitting data to the signal-to-distance function fdB(d) =
−10nlog10(d) + c, proposed in [14], [25], where n and c
are constants that fit fdB(d) to our data. We then predict pd
from bidirectional SNR, assuming a linear mapping between
the two. We fit fdB(d) and our SNR-to-pd mapping using
our experimental data and the Broyden-Fletcher-Goldfarb-
Shanno (BFGS) algorithm [77], [78]. We term this approach
the Signal-Model (sigMod). We also constructed a Bayesian
Ridge Regression (BR) model [79] and a Gaussian Process
Regression model (GP) with a radial basis function kernel
[80], both using the same inputs discussed in Section B.
For a fourth baseline approach, we trained a second GP
model that only uses location-pairs as model inputs (GP-
pos). We chose the GP methods because using a GP model
was proposed in other works to map RSS between robots
using position [47]–[50] and position with obstruction [51],
and for mapping RF jamming signals [17]. To compare
against an NN approach, we implemented the simple NN
proposed in [52] for predicting signal strength in a mine.
The NN takes the same input as our SVRF model and has
a single, fully connected 16 unit hidden layer. Additionally,
we trained a Deep NN (DNN) that has four fully connected
hidden layers (a 16 unit layer, two 32 unit layers, and
another 16 unit layer), all using a restricted linear activation
function. We also compare our model against the individual
SVR and Random Forest (R-F) models without averaging
together the prediction, as discussed in Section B. We used
TensorFlow [81] to build both the NN and the DNN models
and used scikit-learn [82] to build the other models.

1) Model Accuracy
To assess the accuracy of the various ETX prediction models,
we trained all approaches 50 times on randomized training-
test set splits and averaged together the Mean Squared Error
(MSE) and R-Squared score (R2). A smaller MSE score is
better while a higher R2 score is better. The MSE metric
tells us how accurately each approach can predict pd (the
probability that a data packet is successfully delivered and
acknowledged), penalizing predictions that are further away
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Mock-Town Courtyard

Training Set Test Set Training Set Test Set
MSE R2 MSE R2 MSE R2 MSE R2

sigMod 4.47·10-2 0.083 4.71·10-2 0.022 3.55·10-2 0.106 3.51·10-2 0.089
GP 9.17·10-3 0.812 3.60·10-2 0.242 1.28·10-2 0.678 1.66·10-2 0.556

GP-pos 9.55·10-3 0.804 3.55·10-2 0.254 1.18·10-2 0.704 1.50·10-2 0.600
NN 0.200 -3.13 0.214 -3.37 0.347 -7.83 0.390 -9.39

DNN 2.06·10-2 0.577 3.15·10-2 0.345 1.07·10-2 0.731 1.61·10-2 0.565
BR 3.12·10-2 0.360 3.35·10-2 0.302 1.99·10-2 0.500 1.98·10-2 0.474
R-F 5.22·10-3 0.893 2.98·10-2 0.377 3.39·10-3 0.915 1.78·10-2 0.527
SVR 1.52·10-2 0.688 3.53·10-2 0.259 1.21·10-2 0.695 1.69·10-2 0.552

SVRF 8.23·10-3 0.831 3.00·10-2 0.371 6.17·10-3 0.845 1.58·10-2 0.579

TABLE 2: Prediction Accuracy at Mock-Town and Courtyard

from the desired output. An MSE value of 2.0·10-2 equates to
roughly 14% error when the true pd value is 1 while an MSE
value of 6.0·10-2 equates to roughly 26% error. We would
like an MSE value close to or below 2.0·10-2 and do not
want values above 6.0·10-2. The R2 score is a “goodness
of fit” metric that tells us how well the inputs predict the
desired output. We prefer an R2 score above 0.5, which tells
us that there is positive correlation between the model inputs
and the outputs, and we do not want a negative R2 score,
which indicates that the model is a poor choice for the data.
Due to the limited number of measurements, we chose an
80-20 train-test split ratio.

Tables 2 and 3 summarize our results, listing the aver-
age MSE and R2 values from both the training and test
datasets. In all four environments, both the sigMod and
BR approaches struggled to capture meaning from the data,
with both having negative R2 scores in the Office. The GP
model performed well in certain environments, such as the
Office where it tied for best, and had similar results at
times between the training set and test set, as seen on the
Courtyard dataset, which suggests that the model is robust
against over fitting. However, this model did not perform
particularly well in the other environments, with performance

comparable to the BR model and noticeably struggling on
the Camp dataset. The GP-pos model performed better than
the other models on the Courtyard dataset. This environment
is fairly open and using position information was sufficient
to determine peer-to-peer ETX here. However, the GP-pos
model did not perform as well on the Mock-Town and Office
data and had a negative R2 score in the Camp environment
with changing RF noise. Interestingly, both the GP and GP-
pos models performed the best on the training dataset in the
Camp environment then saw a major drop in performance
on the test data, suggesting major over fitting. Although
GP models are powerful regression tools, we believe that
they are struggling to predict ETX in most environments
due to a limited number of data points. The GP-pos model
specifically is failing in the Camp environment due to the
changing RF noise that was not position dependent.

The NN model performed worse than all other models on
every dataset, with consistently high MSE and a negative R2
score in every environment. This same model was found to
perform quite well in [52], where they had a dataset with over
one million measurements and trained with a batch size of
2,048, suggesting that this NN would have performed better
for predicting pd if we had a substantially larger dataset. The

Camp Office

Training Set Test Set Training Set Test Set
MSE R2 MSE R2 MSE R2 MSE R2

sigMod 0.355 -1.19 0.358 -1.29 6.28·10-2 -0.29 6.49·10-2 -0.37
GP 4.43·10-3 0.973 0.112 0.286 1.28·10-2 0.738 2.03·10-2 0.581

GP-pos 5.15·10-3 0.968 0.223 -0.425 1.44·10-2 0.704 2.42·10-2 0.490
NN 0.468 -1.89 0.493 -2.12 0.245 -4.01 25.3 -430

DNN 4.97·10-2 0.694 7.15·10-2 0.548 1.88·10-2 0.615 4.07 -65.6
BR 9.71·10-2 0.400 0.107 0.321 2.15·10-2 0.560 0.432 -6.875
R-F 1.34·10-2 0.917 6.88·10-2 0.563 4.07·10-3 0.917 2.25·10-2 0.534
SVR 4.83·10-2 0.702 7.35·10-2 0.535 1.35·10-2 0.723 2.07·10-2 0.574

SVRF 2.39·10-2 0.852 6.39·10-2 0.596 7.17·10-3 0.853 2.02·10-2 0.583

TABLE 3: Prediction Accuracy at Camp and Office
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DNN performed well at times, ranking second best in the
Camp and third in the Mock-Town and Courtyard. However,
the DNN struggled greatly with the Office data. We used the
Courtyard dataset when designing and initially evaluating
the DNN. We believe that this causes the DNN’s design
to work well for outdoor environments but not for indoor
environments, suggesting that the design of the model must
change from environment-to-environment for this approach
to work well.

The Random Forest model performed well on the Mock-
Town and Office datasets but was not as consistent on the
other datasets. This model outperformed all of the other
models on the training data for the Mock-Town, Courtyard,
and Office datasets but sees a large drop in performance on
these test sets. This suggests that this model is over fitting to
the data and does not generalize well. The SVR model does
not appear to suffer from over fitting and had a reasonable
drop in performance from the training data to the test data
for all datasets. However, the SVR model by itself does not
uniformly perform better than the other models.

The trend in the Random Forest and SVR performance
motivates our proposed SVRF model. The SVRF model
outperformed all other models on the test data in the Camp
and Office environments, while performing second best in
the Mock-Town and Courtyard environments, with a near tie
on the former of the two. These results show that the SVRF
model provides a nice balance between the superior results
of the Random Forest and the generalizability of the SVR
model.

2) Training on Sparse Datasets
To evaluate how data sparsity impacts performance, we
varied the size of the training set, training each regression
model 50 times at each interval, and measured the average
Root Mean Squared Error (RMSE). The RMSE tells us the
average prediction error in pd, where a lower RMSE is better.
We prefer an RMSE at or below 0.15 and do not want a

value above 0.25, which is an error of roughly 15% and
25%, respectively, when pd is close to 1.

Figures 4a, 4b, 5a, and 5b graph our results for each of the
datasets. We note that some of the models had a noticeably
worse RMSE, causing them to not appear on the graph. For
example, the NN performed very poorly in the Mock-Town
environment, where the minimum achieved RMSE was 0.39,
so the results for the NN do not appear in any of the figures
while the sigMod and GP-pos models did not perform well
enough to appear in the figures for the Camp and Office
datasets.

Our SVRF model reaches the desired accuracy (0.15) with
around 80 to 100 measurements on the Courtyard and Office
datasets. No model reached our preferred error level on the
Mock-Town and Campdatasets, with the latter only reaching
an acceptable error level (0.25) after 300 measurements.
However, our SVRF model is trending downward on all
datasets as the number of measurements increase, suggesting
that the model would eventually hit the preferred error level
if given more data points.

The model-versus-model performance is mostly the same
as already discussed in Section 1, with the SVRF model
consistently stronger than the other approaches on the Mock-
Town, Camp, and Office datasets and second best on the
Courtyard dataset. The only model that has a notable per-
formance trend different from the rest is the DNN, which is
trending downwards at a steeper rate than most of the other
models on the outdoor datasets (Mock-Town, Courtyard, and
Camp). The same trend is seen with the GP model on the
Office dataset. These trends suggest that the DNN and GP
models could eventually outperform the SVRF model if
given enough data in the environments where they perform
well (outdoor environments for the DNN and indoors for the
GP). All of the considered datasets each took several hours to
collect due to the process required to measure ETX, meaning
that the SVRF model’s robustness to sparse datasets makes
it more ideal than the DNN and GP. Furthermore, neither of
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FIGURE 4: Graphs (a) and (b) show the average RMSE as the size of the training set varies on the Mock-Town and
Courtyard datasets, respectively. Image (c) shows two of the Jackal robots (second robot at top right) in the Mock-Town.
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FIGURE 5: Graphs (a) and (b) show the average RMSE as the size of the training set varies on the Camp and Office
datasets, respectively. Image (c) shows two of the Jackal robots in the Camp.

these alternative approaches are as universally adaptable to
different environments as the SVRF model.

B. Maintaining Connectivity with Another Device
Our LQCM can be used to determine what subregions of the
environment a robot can manuever through while maintain-
ing a desired communication link with another device. The
other device could be another robot or static infrastructure.
To demonstrate this, we used an LQCM in the Courtyard
and Office environments to determine which areas in the
environment a robot could operate in while still maintaining
a desired ETX connection with the base station. Possible
applications for this setup include a robot exploring the
environment while streaming sensor data back to the base
station or when a robot is remotely operated from the base
station, as seen in works such as [83], [84].

In the Courtyard, we cycled through every vertex in the
LQCM and checked the predicted probability of delivery, pd,
from the robot to the base station. If the pd was above 0.5 (an
ETX of 2) we highlighted the cell green that is represented
by that vertex in the LQCM. In a similar manner, we checked
the predicted pd from the base station to the robot vertices
in the Office environment and highlighted all corresponding
cells green where pd ≥ 0.75 (and ETX of 1.33). For each
setup, we randomly selected 20 locations throughout the
environment and measured pd (from the robot to the base
station for the Courtyard and from the base station to the
robot in the Office).

Figure 6 shows the subregions of each environment
(shaded in green) where the robot can maintain the desired
communication link with the base station. The blue markers
show where pd was above the desired threshold and the red

Courtyard Office

FIGURE 6: Connectivity results from the Courtyard and Office. Green shading are subregions that are predicted to meet
the desired communication quality, blue markers are locations where pd was measured above the desired threshold, red
markers are locations where pd was measured below the threshold, and the white markers are base stations.
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markers are where pd was below the threshold. For clarity,
we desire blue markers in shaded regions and red markers
outside of shaded regions. In the Courtyard only two out
of 20 measurements were not as predicted while in the
Office only a single measurement out of 20 did not match
the prediction. These experiments show how an LQCM
can be used for identifying subregions of the environment
where a robot can operate while still maintaining a desired
communication link with another device.

C. Generating and Searching Maps
We generated LQCMs for each of the environments. As
discussed in Section A, we discarded occupied cells and
cells that are inaccessible by a robot to avoid generating an
excessive number of cells for locations that are not feasible
to deploy a robot. The outdoor environments (the Mock-
Town, the Courtyard, and the Camp) have several open areas
and each cover a large space, so we chose to use 2 × 2
meter-sized cells when discretizing these environments. This
created 1,197 cells for the Mock-Town, 819 cells for the
Courtyard, and 1,158 for the Camp. We chose a cell size of
0.6×0.6 for the Office because the hallways are much more
narrow, with several small spaces that a robot can access but
are too small to be accurately represented with a 2×2 meter
cell. This created 1,046 cells for the Office.

Figures 7 and 8 show the LQCMs for each environment.
The color of each cell depicts the predicted ETX between
a robot at the white cell and a robot at that specific cell.
Blue represents a perfect connection (ETX = 1) and red is
a weak connection (ETX = 4). In Fig. 7a, we can see the
strong shadowing of each building in the Mock-Town. These
buildings are all made out of metal and are extremely hard to
penetrate with an RF signal. The affect of obstacles is much

lower in the Courtyard because the small concrete barriers
are not as difficult to communicate around, as seen in Fig. 7b.
In Fig. 8a, we can see the impact of the WiFi jammer at the
Camp, located at the orange triangle in the figure. These
buildings are easier to communicate through than in the
Mock-Town, so the impact of obstacles is not as noticeable
but the impact of the WiFi jammer is very pronounced.
Figure 8b shows the Office environment, which is mostly
a narrow hallway. There are two sets of double doors that
separate the two main segments of the hallway, which are
not fully aligned. This misalignment is what creates the
noticeable shadowing along the sides of the hallway on the
left side of the figure, which is what we expect to see.

To evaluate the computational cost of searching for paths
in an LQCM, we randomly selected robot source and sink
locations in each of the environments and used Dijkstra’s
algorithm to get robot configurations from the LQCM,
as discussed in Section B. We chose Dijkstra’s algorithm
instead of other CSP algorithms because we argue that, in
most cases, Dijkstra’s algorithm is sufficient for finding valid
robot configurations, as discussed in Section B and further
investigated in Section D. We used the disk method as an
alternative approach for finding robot configurations. For the
disk method, we assume that any two robots will be able
to communicate when within a predefined distance, which
was determined experimentally. When required, we selected
additional robot deployment locations by minimizing the
maximum distance between any two neighboring robots.
We chose this baseline because it is often used to plan
robot-to-robot communication [7], [10] and to plan robot-to-
infrastructure data collection applications [9], [11]. For a sec-
ond baseline we used the SNR method, as presented in [17].
For this approach, we predicted robot-to-robot signal strength

(a) Mock-Town (b) Courtyard

FIGURE 7: Link Quality Communication Maps for the Mock-Town and Courtyard environments. Each cell’s color represents
the predicted ETX between a robot at the white cell and a robot at that specific cell, where blue is a perfect connection
(ETX = 1) and red is a weak connection (ETX = 4).
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(a) Camp (b) Office

FIGURE 8: Link Quality Communication Maps for the Camp and Office environments. Each cell’s color represents the
predicted ETX between a robot at the white cell and a robot at that specific cell, where blue is a perfect connection (ETX
= 1) and red is a weak connection (ETX = 4).

using the method described in Section A and predicted noise
using k-nearest neighbors and noise measurements collected
when exploring the maps. To determine if additional robots
are needed to connect the source and sink robots, we set
a minimum SNR threshold required for two robots to be
considered connected. We then incrementally increased the
number of relaying robots, searching the map for positions
that maximize the minimum connection between any two
robots, until the predicted robot-to-robot SNR was above
the predefined minimum.

Table 4 shows the results of searching for 20 robot
configurations in each environment. The disk method was
the most computationally efficient and always computed
in under one millisecond. The SNR method took around
six milliseconds to find configurations in the Mock-Town
and Courtyard but noticeably struggled in the Camp and
Office. The latter two areas a very cluttered and the SNR
method is very sensitive to obstructions, preferring line-of-
sight when possible. This caused the algorithm to struggle
to find satisfactory configurations at times in the Camp and
Office where there is less room for additional robots to be
positioned with line-of-sight between one another. Searching
the LQCM with Dijkstra’s algorithm was not as fast as the
disk method but consistently solved in under 10 milliseconds.
Our envisioned use for LQCMs is for them to be integrated
into the mission planning phase of a robot deployment,
where the search only runs periodically. Therefore, we argue

that a computation time at or below 10 milliseconds is
reasonable for the intended use.

D. Environmental Monitoring Application
We ran data transmission experiments in the two outdoor
environments to demonstrate how an LQCM can be used for
relaying data in an environmental monitoring application. We
first looked at robot-to-robot data relaying in the Mock-Town
then looked at streaming data from a robot to a base station
in the Courtyard. In both environments, we transmitted large
chunks of data and recorded the time required to move
the data. We used total transmission time as our metric
because this encompasses other common networking metrics
(e.g. packet latency and packet error rate) while focusing
on application-layer performance. We kept the robots sta-
tionary during data transfer because we are interested in
comparing how well the LQCM represents robot-to-robot
communication when compared to other classical methods.
However, depending on the application, the robots may
need to continue moving while communicating. For these
types of scenarios, our LQCM would be incorporated into
application-specific path planning algorithms, similar to how
communication graphs have been used in works such as [7],
[45], [49].

We again used the disk method and maximizing SNR as
baselines. We were able to find valid robot configurations
in the LQCM for every scenario using Dijkstra’s algorithm

Environment Mock-Town Courtyard Camp Office

DM < 1 / < 1 < 1 / < 1 < 1 / < 1 < 1 / < 1

SNR 6.05 / 0.22 6.2 / 0.41 4,516 / 3,114 1,946 / 3,047
LQCM 8.65 / 2.25 4.0 / 0.32 8.65 / 0.88 6.75 / 1.02

TABLE 4: Average computation time / standard deviation (both in milliseconds) to search for robot configurations.
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Mock-Town Environment Courtyard Environment
Scenario 1 2 3 4 5 6 7 8

DM 12.4 66.6 1.7 291.85 48.1 37.2 168.4 17.5
SNR - - - - ∞ 40.0 207.2 27.4

LQCM 7.3 4.1 3.9 11.6 38.6 41.7 23.4 27.1

TABLE 5: Transmission Times for Environmental Monitoring Application

(avoiding the need to solve for CSPs as discussed in Sec-
tion B).

For robot-to-robot data relaying, we designated one robot
as a data source and another robot as a sink to replicate
a scenario where robots are collecting and relaying data
between each other. We moved the source robot and sink
robot around the Mock-Town and used the LQCM to de-
termine if additional robots were required to improve data-
throughput and to decide where to position additional relay
robots when needed. We only considered scenarios where
the LQCM proposed a different robot configuration than the
configuration found using the baseline. For each considered
configuration, we had the source robot send the sink robot
100 data packets, each 110 kB in size for a total of 11 MB,
and recorded the time required to complete the transmission.
We repeated this experiment 10 times for each setup. This
data relay experiment is meant to imitate transmitting larger
data files, such as data muling applications where robots are
used to collect sensor data [7], [10], [11].

Figure 9 shows the various source-to-sink scenarios we
experimented with. Table 5 shows the results for each
scenario. Except for Scenario 3, using our LQCM resulted
in an increase in the data transmission rate for all scenarios
in the Mock-Town environment. In Scenario 1, we see an
example of where the disk method added an extra robot
that slowed down data streaming while Scenarios 2 and

3 show examples of where the disk method did not add
an additional robot when the LQCM did. The additional
robot was needed in Scenario 2, where the LQCM clearly
outperforms the disk method, but was not needed in Scenario
3. We hypothesize that our method failed to outperform the
baseline in Scenario 3 because the large building (marked
red in 9) was positioned perfectly to reflect radio waves
directly from the source to the sink robot and our ETX
prediction method was unable to accurately predict this
behavior. Interestingly, the fastest data-transfer rate found
by the LQCM was in Scenario 3, suggesting that using
the LQCM is still a competitive method in scenarios where
the ETX prediction may have some error. Finally, Scenario
4 shows an example where both the LQCM and the disk
method chose the same number of robots but placed them in
different locations. The disk method was agnostic to how
the buildings would impact communication and placed a
relay robot between two buildings. This caused the disk
method to struggle greatly, averaging over 290 seconds to
transmit the data, while using the LQCM only took 11.6
seconds, a transfer rate comparable to the other scenarios.
On average, using the LQCM decreased transmission time
by 26.6% in the Mock-Town environment, which extreme
cases (Scenarios 2 and 4) seeing over 90% decrease in
transmission time.

Scenario 1 Scenario 2 Scenario 3 Scenario 4

FIGURE 9: Environmental monitoring application in the Mock-Town environment. Blue markers show the source robot,
green markers show the sink robot and turquoise are relay robots. The red box marks a building discussed in Section D.
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For the robot-to-base-station streaming scenarios in the
Courtyard environment, we designated one robot as a data
source and positioned the other robots to help relay the
data back to the base station (as needed). We again used an
LQCM to determine when any additional robots were needed
to connect the source robot to the base station. For each
configuration, we had the source robot send the base station
714 data packets, each 1.4 kB in size for a total of 1 MB, and
recorded how long it took to transmit the data. We repeated
the experiment 10 times for each robot configuration. This
experiment imitates streaming sensor readings, such as a
video feed as seen in [17], [85], [86].

Figure 10 shows the various robot-to-base-station scenar-
ios and Table 5 shows the results for each scenario. The disk
method outperformed using an LQCM in Scenario 8 while
the LQCM outperformed the disk method in Scenarios 5
and 7, and both methods performed comparable in Scenario
6 despite finding different robot configurations. The disk
method was more eager to add additional relay robots than
the LQCM, doing so in all but Scenario 7. We believe that
the LQCM failed to outperform the disk method in Scenario
8 because the prediction model is pessimistic on how well the
robot could communicate with a relay robot and determined
that communicating directly with the base station would be
more efficient. On average, using the LQCM still decreases
the transmission time by 9.7% when compared against the
disk method in the Courtyard environment and by a total
of 18.2% across all scenarios in both environments. The
SNR method found the same robot configuration as using an

LQCM in Scenarios 6 and 8 but differed from the LQCM
in Scenarios 5 and 7, using one less robot than the LQCM.
In Scenario 5, the SNR method picked a robot configuration
where the source robot was unable to connect to the base
station at all. In Scenario 7, using the LQCM decreased
transmission time by 88.7% compared to using the SNR
method.

These environmental monitoring experiments highlight the
downfalls of each baseline and demonstrate how using an
LQCM helps avoid these downfalls and improves multi-robot
team performance. The disk method tends to be too conser-
vative while also being agnostic to how obstacles will impact
communication, which became particularly problematic in
the Mock-Town environment where the buildings are more
difficult to communicate through. On the other hand, the
SNR method is responsive to the environment but tends to
be too liberal, leading to scenarios where using SNR results
in complete communication failure. Using the LQCM gives
us a balance between the other two methods, where we are
aware of how obstacles will impact communication while
not being too optimistic about peer-to-peer performance.

VII. Conclusions, Limitations, and Future Work
This work presents the Link Quality Communication Map
(LQCM), a way of mapping the potential for two robots
to communicate using the Expected Transmission Count
(ETX) link quality metric. We presented various properties
of LQCM and highlighted how they can be used in a
variety of distributed, multi-robot applications. Our field test

U
si

n
g 

LQ
CM

D
is

k 
M

et
h

od

17

M
ax

im
iz

e 
SN

R

Scenario 5

U
si

n
g 

LQ
CM

D
is

k 
M

et
h

od

17

M
ax

im
iz

e 
SN

R

Scenario 6

U
si

n
g 

LQ
CM

D
is

k 
M

et
h

od

17

M
ax

im
iz

e 
SN

R

Scenario 7

U
si

n
g 

LQ
CM

D
is

k 
M

et
h

od

17

M
ax

im
iz

e 
SN

R

Scenario 8

FIGURE 10: Data streaming in the Courtyard environment.
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results support our claims for why communication-aware
robot planning should use an LQCM instead of traditional
methods for representing communication. We also presented
an aggregated regression model, termed SVRF, for predicting
ETX between points by extracting features from an occu-
pancy grid, including robot-to-robot distance, obstruction,
RF noise, radio power settings, and a prediction on signal
multi-path distance. Using data collected on physical robots,
we showed that our ETX prediction model outperforms other
approaches. To promote research integrity, we have made
the ROS package used for generating an LQCM and our
experimental data publicly available1.

This work shows great promise in closing the gap between
agnostic communication models used in robot planning and
real-world robot-to-robot communication but has limitations.
In this work, we assumed that the physical environment is
static and known a priori. This limitation could be addressed
by rapidly updating the structure of an LQCM online, as
changes to the environment are discovered. Future work
should focus on incorporating transfer learning methods (for
example, see [87]) to overcome this limitation and make our
prediction models more robust to changing domains.

Another limitation is that collecting ETX measurements
to train our SVRF model is time consuming – each of the
presented datasets took several hours to collect. Possible
approaches to overcome this limitation include adapting
prior knowledge to novel environments with similar char-
acteristics, using simulations to generate training data as
suggested in [40], [41], or using filtering methods such as
those seen in [31], [42], [43] to speed-up the data collection
process. If given a larger dataset, more powerful learning
approaches, such as Gaussian Process Regression or Deep
Neural Networks, may prove to be better ETX predictors.
Additionally, other factors, such as the material type of
obstacles and the time of day, impact ETX but were not
incorporated into our ETX prediction model. One possible
extension to this work is to create scene graphs, similar to
the ones found in [88], that hold information on predicted
object material types, which could be incorporated into our
ETX prediction process.

To simplify the process of determining how many robots
are required and where to position robots to move data
from robot to robot and from robot to humans, we chose
to discretize the environment. We showed that this discrete
representation provides optimality guarantees when selecting
robot configurations but at the limitation that we may be
losing communication quality accuracy through the coarse-
ness of the regions or from a poor decomposition of the
environment. Future work could further investigate methods
for building communication maps using ETX in continuous
space. Another limitation of our proposed LQCM design
is that it currently has no mechanism for handling how a
single robot can be used for multiple data paths through the
graph. The ETX along any given data path would depend on

1https://github.com/JonD07/CommunicationMap

how strong the connection is along the other data paths, the
size of the data packets, and the interval of communication
(a continuous data stream versus periodical data transfer).
To the best of our knowledge, this topic has not been fully
investigated.

In addition to addressing the current limitations of LQCM
as presented here, we see many areas for future work. We
plan to investigate how to integrate building an LQCM
with the multi-robot Simultaneous Localization and Mapping
problem. We also plan to expand our LQCM for three-
dimensional maps and include multi-modal robots (e.g. ac-
commodating both ground vehicles and drones). As dis-
cussed in Section B, finding certain types of paths in an
LQCM is hard and more work is needed in identifying and
evaluating algorithms for finding such paths in an LQCM.
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